| 000 | 02960nam a22004575i 4500 | ||
|---|---|---|---|
| 001 | 978-3-0346-0565-6 | ||
| 003 | DE-He213 | ||
| 005 | 20140220084518.0 | ||
| 007 | cr nn 008mamaa | ||
| 008 | 100917s2010 sz | s |||| 0|eng d | ||
| 020 |
_a9783034605656 _9978-3-0346-0565-6 |
||
| 024 | 7 |
_a10.1007/978-3-0346-0565-6 _2doi |
|
| 050 | 4 | _aQA612-612.8 | |
| 072 | 7 |
_aPBPD _2bicssc |
|
| 072 | 7 |
_aMAT038000 _2bisacsh |
|
| 082 | 0 | 4 |
_a514.2 _223 |
| 100 | 1 |
_aØstvær, Paul Arne. _eauthor. |
|
| 245 | 1 | 0 |
_aHomotopy Theory of C*-Algebras _h[electronic resource] / _cby Paul Arne Østvær. |
| 264 | 1 |
_aBasel : _bSpringer Basel, _c2010. |
|
| 300 |
_aVI, 140p. _bonline resource. |
||
| 336 |
_atext _btxt _2rdacontent |
||
| 337 |
_acomputer _bc _2rdamedia |
||
| 338 |
_aonline resource _bcr _2rdacarrier |
||
| 347 |
_atext file _bPDF _2rda |
||
| 490 | 1 |
_aFrontiers in Mathematics, _x1660-8046 |
|
| 505 | 0 | _a1 Introduction -- 2 Preliminaries -- 2.1 C*-spaces -- 2.2 G – C*-spaces -- 2.3 Model categories -- 3 Unstable C*-homotopy theory -- 3.1 Pointwise model structures -- 3.2 Exact model structures -- 3.3 Matrix invariant model structures -- 3.4 Homotopy invariant model structures -- 3.5 Pointed model structures -- 3.6 Base change -- 4 Stable C*-homotopy theory -- 4.1 C*-spectra -- 4.2 Bispectra -- 4.3 Triangulated structure -- 4.4 Brown representability -- 4.5 C*-symmetric spectra -- 4.6 C*-functors -- 5 Invariants -- 5.1 Cohomology and homology theories -- 5.2 KK-theory and the Eilenberg-MacLane spectrum -- 5.3 HL-theory and the Eilenberg-MacLane -- 5.4 The Chern-Connes-Karoubi character -- 5.5 K-theory of C*-algebras -- 5.6 Zeta functions -- 6 The slice filtration -- References -- Index. | |
| 520 | _aHomotopy theory and C*-algebras are central topics in contemporary mathematics. This book introduces a modern homotopy theory for C*-algebras. One basic idea of the setup is to merge C*-algebras and spaces studied in algebraic topology into one category comprising C*-spaces. These objects are suitable fodder for standard homotopy theoretic moves, leading to unstable and stable model structures. With the foundations in place one is led to natural definitions of invariants for C*-spaces such as homology and cohomology theories, K-theory and zeta-functions. The text is largely self-contained. It serves a wide audience of graduate students and researchers interested in C*-algebras, homotopy theory and applications. | ||
| 650 | 0 | _aMathematics. | |
| 650 | 0 | _aFunctional analysis. | |
| 650 | 0 | _aAlgebraic topology. | |
| 650 | 1 | 4 | _aMathematics. |
| 650 | 2 | 4 | _aAlgebraic Topology. |
| 650 | 2 | 4 | _aFunctional Analysis. |
| 710 | 2 | _aSpringerLink (Online service) | |
| 773 | 0 | _tSpringer eBooks | |
| 776 | 0 | 8 |
_iPrinted edition: _z9783034605649 |
| 830 | 0 |
_aFrontiers in Mathematics, _x1660-8046 |
|
| 856 | 4 | 0 | _uhttp://dx.doi.org/10.1007/978-3-0346-0565-6 |
| 912 | _aZDB-2-SMA | ||
| 999 |
_c111125 _d111125 |
||