000 04359nam a22004575i 4500
001 978-1-4419-6824-1
003 DE-He213
005 20140220084510.0
007 cr nn 008mamaa
008 100702s2010 xxu| s |||| 0|eng d
020 _a9781441968241
_9978-1-4419-6824-1
024 7 _a10.1007/978-1-4419-6824-1
_2doi
050 4 _aQA276-280
072 7 _aPBT
_2bicssc
072 7 _aMBNS
_2bicssc
072 7 _aMED090000
_2bisacsh
082 0 4 _a519.5
_223
100 1 _aZhang, Heping.
_eauthor.
245 1 0 _aRecursive Partitioning and Applications
_h[electronic resource] /
_cby Heping Zhang, Burton H. Singer.
250 _aSecond.
264 1 _aNew York, NY :
_bSpringer New York,
_c2010.
300 _aXIV, 262p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringer Series in Statistics,
_x0172-7397 ;
_v0
505 0 _aA Practical Guide to Tree Construction -- Logistic Regression -- Classification Trees for a Binary Response -- Examples Using Tree-Based Analysis -- Random and Deterministic Forests -- Analysis of Censored Data: Examples -- Analysis of Censored Data: Concepts and Classical Methods -- Analysis of Censored Data: Survival Trees and Random Forests -- Regression Trees and Adaptive Splines for a Continuous Response -- Analysis of Longitudinal Data -- Analysis of Multiple Discrete Responses.
520 _aThe routes to many important outcomes including diseases and ultimately death as well as financial credit consist of multiple complex pathways containing interrelated events and conditions. We have historically lacked effective methodologies for identifying these pathways and their non-linear and interacting features. This book focuses on recursive partitioning strategies as a response to the challenge of pathway characterization. A highlight of the second edition is the many worked examples, most of them from epidemiology, bioinformatics, molecular genetics, physiology, social demography, banking, and marketing. The statistical issues, conceptual and computational, are not only treated in detail in the context of important scientific questions, but also an array of substantively-driven judgments are explicitly integrated in the presentation of examples. Going considerably beyond the standard treatments of recursive partitioning that focus on pathway representations via single trees, this second edition has entirely new material devoted to forests from predictive and interpretive perspectives. For contexts where identification of factors contributing to outcomes is a central issue, both random and deterministic forest generation methods are introduced via examples in genetics and epidemiology. The trees in deterministic forests are reproducible and more easily interpretable than the components of random forests. Also new in the second edition is an extensive treatment of survival forests and post-market evaluation of treatment effectiveness. Heping Zhang is Professor of Public Health, Statistics, and Child Study, and director of the Collaborative Center for Statistics in Science, at Yale University. He is a Fellow of the American Statistical Association and the Institute of Mathematical Statistics, a Myrto Lefkopoulou Distinguished Lecturer Awarded by Harvard School of Public Health, and a Medallion lecturer selected by the Institute of Mathematical Statistics. Burton Singer is Courtesy Professor in the Emerging Pathogens Institute at University of Florida, and previously Charles and Marie Robertson Professor of Public and International Affairs at Princeton University. He is a member of the National Academy of Sciences and Institute of Medicine of the National Academies, and a Fellow of the American Statistical Association.
650 0 _aStatistics.
650 1 4 _aStatistics.
650 2 4 _aStatistics for Life Sciences, Medicine, Health Sciences.
700 1 _aSinger, Burton H.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9781441968234
830 0 _aSpringer Series in Statistics,
_x0172-7397 ;
_v0
856 4 0 _uhttp://dx.doi.org/10.1007/978-1-4419-6824-1
912 _aZDB-2-SMA
999 _c110694
_d110694