000 03194nam a22004815i 4500
001 978-1-4419-0898-8
003 DE-He213
005 20140220084503.0
007 cr nn 008mamaa
008 100301s2010 xxu| s |||| 0|eng d
020 _a9781441908988
_9978-1-4419-0898-8
024 7 _a10.1007/978-1-4419-0898-8
_2doi
050 4 _aQC173.96-174.52
072 7 _aPHQ
_2bicssc
072 7 _aSCI057000
_2bisacsh
082 0 4 _a530.12
_223
100 1 _aSaller, Heinrich.
_eauthor.
245 1 0 _aOperational Spacetime
_h[electronic resource] :
_bInteractions and Particles /
_cby Heinrich Saller.
264 1 _aNew York, NY :
_bSpringer New York,
_c2010.
300 _aX, 344p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aFundamental Theories of Physics ;
_v163
505 0 _aand Orientation -- Einstein’s Gravity -- Riemannian Manifolds -- Mass Points -- Quantum Mechanics -- Quantum Fields of Flat Spacetime -- External and Internal Operations -- Relativities and Homogeneous Spaces -- Representation Coeffficients -- Convolutions and Product Representations -- Interactions and Kernels -- Electroweak Spacetime -- Masses and Coupling Constants.
520 _aOperational Spacetime: Interactions and Particles provides readers with a basic understanding of the mutual conditioning of spacetime and interactions and matter. The spacetime manifold will be looked at to be a reservoir for the parametrization of operation Lie groups or subgroup classes of Lie groups. With basic operation groups or Lie algebras, all physical structures can be interpreted in terms of corresponding realizations or representations. Physical properties are related eigenvalues or invariants. As an explicit example, an operational spacetime is proposed, called electroweak spacetime, parametrizing the classes of the internal hypercharge-isospin group in the general linear group in two complex dimensions, i.e., the Lorentz cover group, extended by the causal (dilation) and phase group. Its representations and invariants will be investigated with the aim to connect them, qualitatively and numerically, with the properties of interactions and particles as arising in the representations of its tangent Minkowski spaces. Heinrich Saller is the author of Operational Quantum Theory I: Nonrelativistic Structures (Springer, 2006) and Operational Quantum Theory II: Relativistic Structures (Springer, 2006).
650 0 _aPhysics.
650 0 _aQuantum theory.
650 0 _aMathematical physics.
650 1 4 _aPhysics.
650 2 4 _aQuantum Physics.
650 2 4 _aClassical and Quantum Gravitation, Relativity Theory.
650 2 4 _aMathematical Methods in Physics.
650 2 4 _aElementary Particles, Quantum Field Theory.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9781441908971
830 0 _aFundamental Theories of Physics ;
_v163
856 4 0 _uhttp://dx.doi.org/10.1007/978-1-4419-0898-8
912 _aZDB-2-PHA
999 _c110271
_d110271