000 03373nam a22005055i 4500
001 978-0-8176-4934-0
003 DE-He213
005 20140220084457.0
007 cr nn 008mamaa
008 100301s2010 xxu| s |||| 0|eng d
020 _a9780817649340
_9978-0-8176-4934-0
024 7 _a10.1007/978-0-8176-4934-0
_2doi
050 4 _aQA564-609
072 7 _aPBMW
_2bicssc
072 7 _aMAT012010
_2bisacsh
082 0 4 _a516.35
_223
100 1 _aBogomolov, Fedor.
_eeditor.
245 1 0 _aCohomological and Geometric Approaches to Rationality Problems
_h[electronic resource] :
_bNew Perspectives /
_cedited by Fedor Bogomolov, Yuri Tschinkel.
250 _a1.
264 1 _aBoston :
_bBirkhäuser Boston,
_c2010.
300 _aX, 314p. 47 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aProgress in Mathematics ;
_v282
505 0 _aThe Rationality of Certain Moduli Spaces of Curves of Genus 3 -- The Rationality of the Moduli Space of Curves of Genus 3 after P. Katsylo -- Unramified Cohomology of Finite Groups of Lie Type -- Sextic Double Solids -- Moduli Stacks of Vector Bundles on Curves and the King–Schofield Rationality Proof -- Noether’s Problem for Some -Groups -- Generalized Homological Mirror Symmetry and Rationality Questions -- The Bogomolov Multiplier of Finite Simple Groups -- Derived Categories of Cubic Fourfolds -- Fields of Invariants of Finite Linear Groups -- The Rationality Problem and Birational Rigidity.
520 _aRationality problems link algebra to geometry. The difficulties involved depend on the transcendence degree over the ground field, or geometrically, on the dimension of the variety. A major success in 19th century algebraic geometry was a complete solution of the rationality problem in dimensions one and two over algebraically closed ground fields of characteristic zero. These advances have led to many interdisciplinary applications of algebraic geometry. This comprehensive text consists of surveys and research papers by leading specialists in the field. Topics discussed include the rationality of quotient spaces, cohomological invariants of finite groups of Lie type, rationality of moduli spaces of curves, and rational points on algebraic varieties. This volume is intended for research mathematicians and graduate students interested in algebraic geometry, and specifically in rationality problems. I. Bauer C. Böhning F. Bogomolov F. Catanese I. Cheltsov N. Hoffmann S.-J. Hu M.-C. Kang L. Katzarkov B. Kunyavskii A. Kuznetsov J. Park T. Petrov Yu. G. Prokhorov A.V. Pukhlikov Yu. Tschinkel
650 0 _aMathematics.
650 0 _aGeometry, algebraic.
650 0 _aGroup theory.
650 0 _aTopological Groups.
650 1 4 _aMathematics.
650 2 4 _aAlgebraic Geometry.
650 2 4 _aTopological Groups, Lie Groups.
650 2 4 _aGroup Theory and Generalizations.
700 1 _aTschinkel, Yuri.
_eeditor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9780817649333
830 0 _aProgress in Mathematics ;
_v282
856 4 0 _uhttp://dx.doi.org/10.1007/978-0-8176-4934-0
912 _aZDB-2-SMA
999 _c109920
_d109920