000 03516nam a22004575i 4500
001 978-0-387-98098-0
003 DE-He213
005 20140220084457.0
007 cr nn 008mamaa
008 100301s2010 xxu| s |||| 0|eng d
020 _a9780387980980
_9978-0-387-98098-0
024 7 _a10.1007/978-0-387-98098-0
_2doi
050 4 _aQA299.6-433
072 7 _aPBK
_2bicssc
072 7 _aMAT034000
_2bisacsh
082 0 4 _a515
_223
100 1 _aDavidson, Kenneth R.
_eauthor.
245 1 0 _aReal Analysis and Applications
_h[electronic resource] :
_bTheory in Practice /
_cby Kenneth R. Davidson, Allan P. Donsig.
264 1 _aNew York, NY :
_bSpringer New York,
_c2010.
300 _bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aUndergraduate Texts in Mathematics,
_x0172-6056
505 0 _aAnalysis -- Review -- The Real Numbers -- Series -- Topology of -- Functions -- Differentiation and Integration -- Norms and Inner Products -- Limits of Functions -- Metric Spaces -- Applications -- Approximation by Polynomials -- Discrete Dynamical Systems -- Differential Equations -- Fourier Series and Physics -- Fourier Series and Approximation -- Wavelets -- Convexity and Optimization.
520 _aThis new approach to real analysis stresses the use of the subject in applications, showing how the principles and theory of real analysis can be applied in various settings. Applications cover approximation by polynomials, discrete dynamical systems, differential equations, Fourier series and physics, Fourier series and approximation, wavelets, and convexity and optimization. Each chapter has many useful exercises. The treatment of the basic theory covers the real numbers, functions, and calculus, while emphasizing the role of normed vector spaces, and particularly of Rn. The applied chapters are mostly independent, giving the reader a choice of topics. This book is appropriate for students with a prior knowledge of both calculus and linear algebra who want a careful development of both analysis and its use in applications. Review of the previous version of this book, Real Analysis with Real Applications: "A well balanced book! The first solid analysis course, with proofs, is central in the offerings of any math.-dept.; ---and yet, the new books that hit the market don't always hit the mark: the balance between theory and applications, ---between technical proofs and intuitive ideas, ---between classical and modern subjects, and between real life exercises vs. the ones that drill a new concept. The Davidson-Donsig book is outstanding, and it does hit the mark." Palle E. T. Jorgenson, Review from Amazon.com Kenneth R. Davidson is University Professor of Mathematics at the University of Waterloo. Allan P. Donsig is Associate Professor of Mathematics at the University of Nebraska-Lincoln.
650 0 _aMathematics.
650 0 _aGlobal analysis (Mathematics).
650 1 4 _aMathematics.
650 2 4 _aAnalysis.
650 2 4 _aApplications of Mathematics.
700 1 _aDonsig, Allan P.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9780387980973
830 0 _aUndergraduate Texts in Mathematics,
_x0172-6056
856 4 0 _uhttp://dx.doi.org/10.1007/978-0-387-98098-0
912 _aZDB-2-SMA
999 _c109886
_d109886