000 02883nam a22005175i 4500
001 978-0-387-68028-6
003 DE-He213
005 20140220084454.0
007 cr nn 008mamaa
008 100301s2010 xxu| s |||| 0|eng d
020 _a9780387680286
_9978-0-387-68028-6
024 7 _a10.1007/978-0-387-68028-6
_2doi
050 4 _aQA252.3
050 4 _aQA387
072 7 _aPBG
_2bicssc
072 7 _aMAT014000
_2bisacsh
072 7 _aMAT038000
_2bisacsh
082 0 4 _a512.55
_223
082 0 4 _a512.482
_223
100 1 _aBluman, George W.
_eauthor.
245 1 0 _aApplications of Symmetry Methods to Partial Differential Equations
_h[electronic resource] /
_cby George W. Bluman, Alexei F. Cheviakov, Stephen C. Anco.
264 1 _aNew York, NY :
_bSpringer New York,
_c2010.
300 _aXVIII, 398p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aApplied Mathematical Sciences,
_x0066-5452 ;
_v168
505 0 _aLocal Transformations and Conservation Laws -- Construction of Mappings Relating Differential Equations -- Nonlocally Related PDE Systems -- Applications of Nonlocally Related PDE Systems -- Further Applications of Symmetry Methods: Miscellaneous Extensions.
520 _aThis is an accessible book on advanced symmetry methods for partial differential equations. Topics include conservation laws, local symmetries, higher-order symmetries, contact transformations, delete "adjoint symmetries," Noether’s theorem, local mappings, nonlocally related PDE systems, potential symmetries, nonlocal symmetries, nonlocal conservation laws, nonlocal mappings, and the nonclassical method. Graduate students and researchers in mathematics, physics, and engineering will find this book useful. This book is a sequel to Symmetry and Integration Methods for Differential Equations (2002) by George W. Bluman and Stephen C. Anco. The emphasis in the present book is on how to find systematically symmetries (local and nonlocal) and conservation laws (local and nonlocal) of a given PDE system and how to use systematically symmetries and conservation laws for related applications.
650 0 _aMathematics.
650 0 _aTopological Groups.
650 0 _aGlobal analysis (Mathematics).
650 1 4 _aMathematics.
650 2 4 _aTopological Groups, Lie Groups.
650 2 4 _aAnalysis.
700 1 _aCheviakov, Alexei F.
_eauthor.
700 1 _aAnco, Stephen C.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9780387986128
830 0 _aApplied Mathematical Sciences,
_x0066-5452 ;
_v168
856 4 0 _uhttp://dx.doi.org/10.1007/978-0-387-68028-6
912 _aZDB-2-SMA
999 _c109755
_d109755