000 04134nam a22005055i 4500
001 978-94-007-0005-5
003 DE-He213
005 20140220083827.0
007 cr nn 008mamaa
008 120105s2011 ne | s |||| 0|eng d
020 _a9789400700055
_9978-94-007-0005-5
024 7 _a10.1007/978-94-007-0005-5
_2doi
050 4 _aQA8.9-10.3
072 7 _aPBC
_2bicssc
072 7 _aPBCD
_2bicssc
072 7 _aMAT018000
_2bisacsh
082 0 4 _a511.3
_223
100 1 _aOrlowska, Ewa.
_eauthor.
245 1 0 _aDual Tableaux: Foundations, Methodology, Case Studies
_h[electronic resource] /
_cby Ewa Orlowska, Joanna Golińska Pilarek.
264 1 _aDordrecht :
_bSpringer Netherlands :
_bImprint: Springer,
_c2011.
300 _aXVI, 523 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aTrends in Logic,
_x1572-6126 ;
_v33
505 0 _a1. Dual Tableau for Classical First-Order Logic -- 2. Dual Tableaux for Logics of Classical Algebras of Binary -- 3. Theories of Point Relations and Relational Model Checking -- 4. Dual Tableaux for Peirce Algebras -- 5. Dual Tableaux for Fork Algebras -- 6. Dual Tableaux for Relational Databases -- Part III. Relational Reasoning in Traditional Non-classical Logics -- 7. Dual Tableaux for Classical Modal Logics -- 8. Dual Tableaux for Some Logics Based on Intuitionism -- 9. Dual Tableaux for Relevant Logics -- 10. Dual Tableaux for Many-valued Logics -- Part IV. Relational Reasoning in Logics of Information and Data -- Analysis -- 11. Dual Tableaux for Information Logics of Plain Frames -- 12. Dual Tableaux for Information Logics of Relative Frames -- 13. Dual Tableau for Formal Concept Analysis -- 14. Dual Tableau for a Fuzzy Logic -- 15. Dual Tableaux for Logics of Order of Magnitude Reasoning -- Part V. Relational Reasoning about Time, Space, and Action -- 16. Dual Tableaux for Temporal Logics -- 17. Dual Tableaux for Interval Temporal Logics -- 18. Dual Tableaux for Spatial Reasoning -- 19. Dual Tableaux for Logics of Programs -- Part VI. Beyond Relational Theories -- 20. Dual Tableaux for Threshold Logics -- 21. Signed Dual Tableau for G¨odel-Dummett Logic -- 22. Dual Tableaux for First-Order Post Logics -- 23. Dual Tableau for Propositional Logic with Identity -- 24. Dual Tableaux for Logics of Conditional Decisions -- 25. Methodological Principles of Dual Tableaux -- References -- Index.
520 _aThe book presents logical foundations of dual tableaux together with a number of their applications both to logics traditionally dealt with in mathematics and philosophy (such as modal, intuitionistic, relevant, and many-valued logics) and to various applied theories of computational logic (such as temporal reasoning, spatial reasoning, fuzzy-set-based reasoning, rough-set-based reasoning, order-of magnitude reasoning, reasoning about programs, threshold logics, logics of conditional decisions). The distinguishing feature of most of these applications is that the corresponding dual tableaux are built in a relational language which provides useful means of presentation of the theories. In this way modularity of dual tableaux is ensured. We do not need to develop and implement each dual tableau from scratch, we should only extend the relational core common to many theories with the rules specific for a particular theory.
650 0 _aMathematics.
650 0 _aLogic.
650 0 _aComputer science.
650 0 _aLogic, Symbolic and mathematical.
650 1 4 _aMathematics.
650 2 4 _aMathematical Logic and Foundations.
650 2 4 _aMathematical Logic and Formal Languages.
650 2 4 _aLogic.
700 1 _aGolińska Pilarek, Joanna.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9789400700048
830 0 _aTrends in Logic,
_x1572-6126 ;
_v33
856 4 0 _uhttp://dx.doi.org/10.1007/978-94-007-0005-5
912 _aZDB-2-SMA
999 _c109172
_d109172