000 02570nam a22004335i 4500
001 978-88-7642-381-9
003 DE-He213
005 20140220083822.0
007 cr nn 008mamaa
008 120116s2011 it | s |||| 0|eng d
020 _a9788876423819
_9978-88-7642-381-9
024 7 _a10.1007/978-88-7642-381-9
_2doi
050 4 _aQA150-272
072 7 _aPBF
_2bicssc
072 7 _aMAT002000
_2bisacsh
082 0 4 _a512
_223
100 1 _aBoito, Paola.
_eauthor.
245 1 0 _aStructured Matrix Based Methods for Approximate Polynomial GCD
_h[electronic resource] /
_cby Paola Boito.
264 1 _aPisa :
_bEdizioni della Normale,
_c2011.
300 _a250p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aTesi/Theses ;
_v15
505 0 _ai. Introduction -- ii. Notation -- 1. Approximate polynomial GCD -- 2. Structured and resultant matrices -- 3. The Euclidean algorithm -- 4. Matrix factorization and approximate GCDs -- 5. Optimization approach -- 6. New factorization-based methods -- 7. A fast GCD algorithm -- 8. Numerical tests -- 9. Generalizations and further work -- 10. Appendix A: Distances and norms -- 11. Appendix B: Special matrices -- 12. Bibliography -- 13. Index.
520 _aDefining and computing a greatest common divisor of two polynomials with inexact coefficients is a classical problem in symbolic-numeric computation. The first part of this book reviews the main results that have been proposed so far in the literature. As usual with polynomial computations, the polynomial GCD problem can be expressed in matrix form: the second part of the book focuses on this point of view and analyses the structure of the relevant matrices, such as Toeplitz, Toepliz-block and displacement structures. New algorithms for the computation of approximate polynomial GCD are presented, along with extensive numerical tests. The use of matrix structure allows, in particular, to lower the asymptotic computational cost from cubic to quadratic order with respect to polynomial degree. 
650 0 _aMathematics.
650 0 _aAlgebra.
650 1 4 _aMathematics.
650 2 4 _aAlgebra.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9788876423802
830 0 _aTesi/Theses ;
_v15
856 4 0 _uhttp://dx.doi.org/10.1007/978-88-7642-381-9
912 _aZDB-2-SMA
999 _c108915
_d108915