000 02762nam a22004935i 4500
001 978-88-470-1679-8
003 DE-He213
005 20140220083821.0
007 cr nn 008mamaa
008 110406s2011 it | s |||| 0|eng d
020 _a9788847016798
_9978-88-470-1679-8
024 7 _a10.1007/978-88-470-1679-8
_2doi
050 4 _aQA273.A1-274.9
050 4 _aQA274-274.9
072 7 _aPBT
_2bicssc
072 7 _aPBWL
_2bicssc
072 7 _aMAT029000
_2bisacsh
082 0 4 _a519.2
_223
100 1 _aPeccati, Giovanni.
_eauthor.
245 1 0 _aWiener Chaos: Moments, Cumulants and Diagrams
_h[electronic resource] :
_bA survey with computer implementation /
_cby Giovanni Peccati, Murad S. Taqqu.
264 1 _aMilano :
_bSpringer Milan,
_c2011.
300 _a200 p. 30 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aBocconi & Springer Series,
_x2039-1471 ;
_v1
520 _aThe concept of Wiener chaos generalizes to an infinite-dimensional setting the properties of orthogonal polynomials associated with probability distributions on the real line. It plays a crucial role in modern probability theory, with applications ranging from Malliavin calculus to stochastic differential equations and from probabilistic approximations to mathematical finance. This book is concerned with combinatorial structures arising from the study of chaotic random variables related to infinitely divisible random measures. The combinatorial structures involved are those of partitions of finite sets, over which Möbius functions and related inversion formulae are defined. This combinatorial standpoint (which is originally due to Rota and Wallstrom) provides an ideal framework for diagrams, which are graphical devices used to compute moments and cumulants of random variables. Several applications are described, in particular, recent limit theorems for chaotic random variables. An Appendix presents a computer implementation in MATHEMATICA for many of the formulae.
650 0 _aMathematics.
650 0 _aCombinatorics.
650 0 _aDistribution (Probability theory).
650 1 4 _aMathematics.
650 2 4 _aProbability Theory and Stochastic Processes.
650 2 4 _aCombinatorics.
650 2 4 _aMeasure and Integration.
700 1 _aTaqqu, Murad S.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9788847016781
830 0 _aBocconi & Springer Series,
_x2039-1471 ;
_v1
856 4 0 _uhttp://dx.doi.org/10.1007/978-88-470-1679-8
912 _aZDB-2-SMA
999 _c108832
_d108832