000 02273nam a22003975i 4500
001 978-3-8348-8600-2
003 DE-He213
005 20140220083819.0
007 cr nn 008mamaa
008 111122s2011 gw | s |||| 0|eng d
020 _a9783834886002
_9978-3-8348-8600-2
024 7 _a10.1007/978-3-8348-8600-2
_2doi
050 4 _aR856-857
072 7 _aMQW
_2bicssc
072 7 _aTEC009000
_2bisacsh
082 0 4 _a610.28
_223
100 1 _aHufnagel, Heike.
_eauthor.
245 1 2 _aA Probabilistic Framework for Point-Based Shape Modeling in Medical Image Analysis
_h[electronic resource] /
_cby Heike Hufnagel.
264 1 _aWiesbaden :
_bVieweg+Teubner Verlag,
_c2011.
300 _aXXIII, 147p. 53 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
520 _aIn medical image analysis, major areas such as radiotherapy, surgery planning, and quantitative diagnostics benefit from shape modeling to facilitate solutions to analysis, segmentation and reconstruction problems. Heike Hufnagel proposes a mathematically sound statistical shape model using correspondence probabilities instead of 1-to-1 correspondences. The explicit probabilistic model is employed as shape prior in an implicit level set segmentation. Due to the particular attributes of the new model, the challenging integration of explicit and implicit representations can be done in an elegant mathematical formulation, thus combining the advantages of both explicit model and implicit segmentation. Evaluations are performed to depict the characteristics and strengths of the new model and segmentation method. The dissertation has received the Fokusfinder award 2011 by the Innovationsstiftung Schleswig-Holstein (ISH), the Basler AG and Philips Medical Systems.
650 0 _aEngineering.
650 0 _aBiomedical engineering.
650 1 4 _aEngineering.
650 2 4 _aBiomedical Engineering.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783834817228
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-8348-8600-2
912 _aZDB-2-ENG
999 _c108735
_d108735