000 02700nam a22004815i 4500
001 978-3-642-22919-0
003 DE-He213
005 20140220083810.0
007 cr nn 008mamaa
008 110831s2011 gw | s |||| 0|eng d
020 _a9783642229190
_9978-3-642-22919-0
024 7 _a10.1007/978-3-642-22919-0
_2doi
050 4 _aQD551-578
072 7 _aPNRH
_2bicssc
072 7 _aSCI013050
_2bisacsh
082 0 4 _a541.37
_223
100 1 _aScragg, Jonathan J.
_eauthor.
245 1 0 _aCopper Zinc Tin Sulfide Thin Films for Photovoltaics
_h[electronic resource] :
_bSynthesis and Characterisation by Electrochemical Methods /
_cby Jonathan J. Scragg.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2011.
300 _aXX, 204 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringer Theses
505 0 _aIntroduction -- Electrodeposition of metallic precursors -- Conversion of precursors into compound semiconductors.- The influences of sulfurisation variables and precursor composition on the development of the CZTS phase -- Opto-electronic properties of Cu2ZnSnS4 films: influences of growth conditions and precursor composition -- Conclusions & recommendations for further studies.    .
520 _aJonathan Scragg documents his work on a very promising material suitable for use in solar cells. Copper Zinc Tin Sulfide (CZTS) is a low cost, earth-abundant material suitable for large scale deployment in photovoltaics. Jonathan pioneered and optimized a low cost route to this material involving electroplating of the three metals concerned, followed by rapid thermal processing (RTP) in sulfur vapour. His beautifully detailed RTP studies – combined with techniques such as XRD, EDX and Raman – reveal the complex relationships between composition, processing and photovoltaic performance. This exceptional thesis contributes to the development of clean, sustainable and alternative sources of energy
650 0 _aChemistry.
650 0 _aRenewable energy sources.
650 0 _aMaterials.
650 1 4 _aChemistry.
650 2 4 _aElectrochemistry.
650 2 4 _aMetallic Materials.
650 2 4 _aRenewable and Green Energy.
650 2 4 _aSurface and Interface Science, Thin Films.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783642229183
830 0 _aSpringer Theses
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-642-22919-0
912 _aZDB-2-CMS
999 _c108280
_d108280