000 02390nam a22005415i 4500
001 978-3-642-21774-6
003 DE-He213
005 20140220083806.0
007 cr nn 008mamaa
008 110707s2011 gw | s |||| 0|eng d
020 _a9783642217746
_9978-3-642-21774-6
024 7 _a10.1007/978-3-642-21774-6
_2doi
050 4 _aQA150-272
072 7 _aPBF
_2bicssc
072 7 _aMAT002000
_2bisacsh
082 0 4 _a512
_223
100 1 _aGillibert, Pierre.
_eauthor.
245 1 0 _aFrom Objects to Diagrams for Ranges of Functors
_h[electronic resource] /
_cby Pierre Gillibert, Friedrich Wehrung.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2011.
300 _aCLVIII, 10p. 19 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v2029
505 0 _a1 Background -- 2 Boolean Algebras Scaled with Respect to a Poset -- 3 The Condensate Lifting Lemma (CLL) -- 4 Larders from First-order Structures -- 5 Congruence-Preserving Extensions -- 6 Larders from von Neumann Regular Rings -- 7 Discussion.
520 _aThis work introduces tools from the field of category theory that make it possible to tackle a number of representation problems that have remained unsolvable to date (e.g. the determination of the range of a given functor). The basic idea is: if a functor lifts many objects, then it also lifts many (poset-indexed) diagrams.
650 0 _aMathematics.
650 0 _aAlgebra.
650 0 _aK-theory.
650 0 _aLogic, Symbolic and mathematical.
650 1 4 _aMathematics.
650 2 4 _aAlgebra.
650 2 4 _aCategory Theory, Homological Algebra.
650 2 4 _aGeneral Algebraic Systems.
650 2 4 _aOrder, Lattices, Ordered Algebraic Structures.
650 2 4 _aMathematical Logic and Foundations.
650 2 4 _aK-Theory.
700 1 _aWehrung, Friedrich.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783642217739
830 0 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v2029
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-642-21774-6
912 _aZDB-2-SMA
912 _aZDB-2-LNM
999 _c108068
_d108068