000 02056nam a22004335i 4500
001 978-3-642-20656-6
003 DE-He213
005 20140220083801.0
007 cr nn 008mamaa
008 110627s2011 gw | s |||| 0|eng d
020 _a9783642206566
_9978-3-642-20656-6
024 7 _a10.1007/978-3-642-20656-6
_2doi
050 4 _aQA403-403.3
072 7 _aPBKD
_2bicssc
072 7 _aMAT034000
_2bisacsh
082 0 4 _a515.785
_223
100 1 _aDerighetti, Antoine.
_eauthor.
245 1 0 _aConvolution Operators on Groups
_h[electronic resource] /
_cby Antoine Derighetti.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2011.
300 _aXII, 171p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes of the Unione Matematica Italiana,
_x1862-9113 ;
_v11
505 0 _a1 Elementary Results -- 2 An Approximation Theorem for CV2(G) -- 3 The Figa-Talamanca Herz Algebra -- 4 The Dual of Ap(G) -- 5 CVp(G) as a Module on Ap(G) -- 6 The Support of a Convolution Operator -- 7 Convolution Operators Supported by Subgroups -- 8 CVp(G) as a Subspace of CV2(G).
520 _aThis volume is devoted to a systematic study of the Banach algebra of the convolution operators of a locally compact group. Inspired by classical Fourier analysis we consider operators on Lp spaces, arriving at a description of these operators and Lp versions of the theorems of Wiener and Kaplansky-Helson.
650 0 _aMathematics.
650 0 _aHarmonic analysis.
650 1 4 _aMathematics.
650 2 4 _aAbstract Harmonic Analysis.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783642206559
830 0 _aLecture Notes of the Unione Matematica Italiana,
_x1862-9113 ;
_v11
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-642-20656-6
912 _aZDB-2-SMA
999 _c107822
_d107822