000 03593nam a22004455i 4500
001 978-3-642-20353-4
003 DE-He213
005 20140220083800.0
007 cr nn 008mamaa
008 110713s2011 gw | s |||| 0|eng d
020 _a9783642203534
_9978-3-642-20353-4
024 7 _a10.1007/978-3-642-20353-4
_2doi
050 4 _aQ342
072 7 _aUYQ
_2bicssc
072 7 _aCOM004000
_2bisacsh
082 0 4 _a006.3
_223
100 1 _aAizenberg, Igor.
_eauthor.
245 1 0 _aComplex-Valued Neural Networks with Multi-Valued Neurons
_h[electronic resource] /
_cby Igor Aizenberg.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2011.
300 _aXVI, 264p. 258 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aStudies in Computational Intelligence,
_x1860-949X ;
_v353
505 0 _aWhy We Need Complex-Valued Neural Networks? -- The Multi-Valued Neuron -- MVN Learning -- Multilayer Feedforward Neural Network based on Multi-Valued Neurons (MLMVN) -- Multi-Valued Neuron with a Periodic Activation Function -- Applications of MVN and MLMVN.
520 _aComplex-Valued Neural Networks have higher functionality, learn faster and generalize better than their real-valued counterparts. This book is devoted to the Multi-Valued Neuron (MVN) and MVN-based neural networks. It contains a comprehensive observation of MVN theory, its learning, and applications. MVN is a complex-valued neuron whose inputs and output are located on the unit circle. Its activation function is a function only of argument (phase) of the weighted sum. MVN derivative-free learning is based on the error-correction rule. A single MVN can learn those input/output mappings that are non-linearly separable in the real domain. Such classical non-linearly separable problems as XOR and Parity n are the simplest that can be learned by a single MVN. Another important advantage of MVN is a proper treatment of the phase information. These properties of MVN become even more remarkable when this neuron is used as a basic one in neural networks. The Multilayer Neural Network based on Multi-Valued Neurons (MLMVN) is an MVN-based feedforward neural network. Its backpropagation learning algorithm is derivative-free and based on the error-correction rule. It does not suffer from the local minima phenomenon. MLMVN outperforms many other machine learning techniques in terms of learning speed, network complexity and generalization capability when solving both benchmark and real-world classification and prediction problems. Another interesting application of MVN is its use as a basic neuron in multi-state associative memories.   The book is addressed to those readers who develop theoretical fundamentals of neural networks and use neural networks for solving various real-world problems. It should also be very suitable for Ph.D. and graduate students pursuing their degrees in computational intelligence.
650 0 _aEngineering.
650 0 _aArtificial intelligence.
650 1 4 _aEngineering.
650 2 4 _aComputational Intelligence.
650 2 4 _aArtificial Intelligence (incl. Robotics).
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783642203527
830 0 _aStudies in Computational Intelligence,
_x1860-949X ;
_v353
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-642-20353-4
912 _aZDB-2-ENG
999 _c107770
_d107770