000 03395nam a22004575i 4500
001 978-3-642-19199-2
003 DE-He213
005 20140220083755.0
007 cr nn 008mamaa
008 110803s2011 gw | s |||| 0|eng d
020 _a9783642191992
_9978-3-642-19199-2
024 7 _a10.1007/978-3-642-19199-2
_2doi
050 4 _aQC5.53
072 7 _aPHU
_2bicssc
072 7 _aSCI040000
_2bisacsh
082 0 4 _a530.15
_223
100 1 _aBoudet, Roger.
_eauthor.
245 1 0 _aQuantum Mechanics in the Geometry of Space-Time
_h[electronic resource] :
_bElementary Theory /
_cby Roger Boudet.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2011.
300 _aXII, 119p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringerBriefs in Physics
505 0 _aIntroduction -- Comparison between Complex and Real Algebraic Languages -- The Clifford Algebra Associated with the Minkowski Space-Time M -- Comparison between Real and Complex Languages -- The U(1) Gauge in Complex and Real Languages - Geometrical Properties and Relation with the Spin and the Energy of a Particle of Spin 1/2 -- Geometrical Properties of the U(1) Gauge -- Relation between the U(1) Gauge, the Spin and the Energyof a Particle of Spin 1/2 -- Geometrical Properties of the Dirac Theory of the Electron -- The Dirac Theory of the Electron in the Real Language -- The Invariant Form of the Dirac Equation and Invariant Properties of the Dirac Theory -- The U(2) Gauge and the Yang-Mills Theory in Complex and Real Languages -- Geometrical Properties of the SU(2) _ U(1) Gauge -- The Glashow-Salam-Weinberg Electroweak Theory -- The Electroweak Theory in STA. Global Presentation -- The Electroweak Theory in STA. Local Presentation -- On a Change of SU(3) into Three SU(2)XU(1) -- A Change of SU(3) into Three SU(2)_U(1).
520 _aThis book continues the fundamental work of Arnold Sommerfeld and David Hestenes formulating theoretical physics in terms of Minkowski space-time geometry. We see how the standard matrix version of the Dirac equation can be reformulated in terms of a real space-time algebra, thus revealing a geometric meaning for the “number i” in quantum mechanics. Next, it is examined in some detail how electroweak theory can be integrated into the Dirac theory and this way interpreted in terms of space-time geometry. Finally, some implications for quantum electrodynamics are considered.The presentation of real quantum electromagnetism is expressed in an addendum. The book covers both the use of the complex and the real languages and allows the reader acquainted with the first language to make a step by step translation to the second one.
650 0 _aPhysics.
650 0 _aMathematical physics.
650 1 4 _aPhysics.
650 2 4 _aMathematical Methods in Physics.
650 2 4 _aQuantum Field Theories, String Theory.
650 2 4 _aClassical and Quantum Gravitation, Relativity Theory.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783642191985
830 0 _aSpringerBriefs in Physics
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-642-19199-2
912 _aZDB-2-PHA
999 _c107492
_d107492