| 000 | 02956nam a22005535i 4500 | ||
|---|---|---|---|
| 001 | 978-3-642-18429-1 | ||
| 003 | DE-He213 | ||
| 005 | 20140220083754.0 | ||
| 007 | cr nn 008mamaa | ||
| 008 | 110317s2011 gw | s |||| 0|eng d | ||
| 020 |
_a9783642184291 _9978-3-642-18429-1 |
||
| 024 | 7 |
_a10.1007/978-3-642-18429-1 _2doi |
|
| 050 | 4 | _aQA299.6-433 | |
| 072 | 7 |
_aPBK _2bicssc |
|
| 072 | 7 |
_aMAT034000 _2bisacsh |
|
| 082 | 0 | 4 |
_a515 _223 |
| 100 | 1 |
_aLang, Jan. _eauthor. |
|
| 245 | 1 | 0 |
_aEigenvalues, Embeddings and Generalised Trigonometric Functions _h[electronic resource] / _cby Jan Lang, David Edmunds. |
| 264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg, _c2011. |
|
| 300 |
_aXI, 220p. 10 illus. _bonline resource. |
||
| 336 |
_atext _btxt _2rdacontent |
||
| 337 |
_acomputer _bc _2rdamedia |
||
| 338 |
_aonline resource _bcr _2rdacarrier |
||
| 347 |
_atext file _bPDF _2rda |
||
| 490 | 1 |
_aLecture Notes in Mathematics, _x0075-8434 ; _v2016 |
|
| 505 | 0 | _a1 Basic material -- 2 Trigonometric generalisations -- 3 The Laplacian and some natural variants -- 4 Hardy operators -- 5 s-Numbers and generalised trigonometric functions -- 6 Estimates of s-numbers of weighted Hardy operators -- 7 More refined estimates -- 8 A non-linear integral system -- 9 Hardy operators on variable exponent spaces. | |
| 520 | _aThe main theme of the book is the study, from the standpoint of s-numbers, of integral operators of Hardy type and related Sobolev embeddings. In the theory of s-numbers the idea is to attach to every bounded linear map between Banach spaces a monotone decreasing sequence of non-negative numbers with a view to the classification of operators according to the way in which these numbers approach a limit: approximation numbers provide an especially important example of such numbers. The asymptotic behavior of the s-numbers of Hardy operators acting between Lebesgue spaces is determined here in a wide variety of cases. The proof methods involve the geometry of Banach spaces and generalized trigonometric functions; there are connections with the theory of the p-Laplacian. | ||
| 650 | 0 | _aMathematics. | |
| 650 | 0 | _aGlobal analysis (Mathematics). | |
| 650 | 0 | _aFunctional analysis. | |
| 650 | 0 | _aDifferential Equations. | |
| 650 | 0 | _aFunctions, special. | |
| 650 | 1 | 4 | _aMathematics. |
| 650 | 2 | 4 | _aAnalysis. |
| 650 | 2 | 4 | _aApproximations and Expansions. |
| 650 | 2 | 4 | _aFunctional Analysis. |
| 650 | 2 | 4 | _aSpecial Functions. |
| 650 | 2 | 4 | _aOrdinary Differential Equations. |
| 650 | 2 | 4 | _aMathematics Education. |
| 700 | 1 |
_aEdmunds, David. _eauthor. |
|
| 710 | 2 | _aSpringerLink (Online service) | |
| 773 | 0 | _tSpringer eBooks | |
| 776 | 0 | 8 |
_iPrinted edition: _z9783642182679 |
| 830 | 0 |
_aLecture Notes in Mathematics, _x0075-8434 ; _v2016 |
|
| 856 | 4 | 0 | _uhttp://dx.doi.org/10.1007/978-3-642-18429-1 |
| 912 | _aZDB-2-SMA | ||
| 912 | _aZDB-2-LNM | ||
| 999 |
_c107440 _d107440 |
||