000 02956nam a22005535i 4500
001 978-3-642-18429-1
003 DE-He213
005 20140220083754.0
007 cr nn 008mamaa
008 110317s2011 gw | s |||| 0|eng d
020 _a9783642184291
_9978-3-642-18429-1
024 7 _a10.1007/978-3-642-18429-1
_2doi
050 4 _aQA299.6-433
072 7 _aPBK
_2bicssc
072 7 _aMAT034000
_2bisacsh
082 0 4 _a515
_223
100 1 _aLang, Jan.
_eauthor.
245 1 0 _aEigenvalues, Embeddings and Generalised Trigonometric Functions
_h[electronic resource] /
_cby Jan Lang, David Edmunds.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2011.
300 _aXI, 220p. 10 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v2016
505 0 _a1 Basic material -- 2 Trigonometric generalisations -- 3 The Laplacian and some natural variants -- 4 Hardy operators -- 5 s-Numbers and generalised trigonometric functions -- 6 Estimates of s-numbers of weighted Hardy operators -- 7 More refined estimates -- 8 A non-linear integral system -- 9 Hardy operators on variable exponent spaces.
520 _aThe main theme of the book is the study, from the standpoint of s-numbers, of integral operators of Hardy type and related Sobolev embeddings. In the theory of s-numbers the idea is to attach to every bounded linear map between Banach spaces a monotone decreasing sequence of non-negative numbers with a view to the classification of operators according to the way in which these numbers approach a limit: approximation numbers provide an especially important example of such numbers. The asymptotic behavior of the s-numbers of Hardy operators acting between Lebesgue spaces is determined here in a wide variety of cases. The proof methods involve the geometry of Banach spaces and generalized trigonometric functions; there are connections with the theory of the p-Laplacian.
650 0 _aMathematics.
650 0 _aGlobal analysis (Mathematics).
650 0 _aFunctional analysis.
650 0 _aDifferential Equations.
650 0 _aFunctions, special.
650 1 4 _aMathematics.
650 2 4 _aAnalysis.
650 2 4 _aApproximations and Expansions.
650 2 4 _aFunctional Analysis.
650 2 4 _aSpecial Functions.
650 2 4 _aOrdinary Differential Equations.
650 2 4 _aMathematics Education.
700 1 _aEdmunds, David.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783642182679
830 0 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v2016
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-642-18429-1
912 _aZDB-2-SMA
912 _aZDB-2-LNM
999 _c107440
_d107440