000 03138nam a22005055i 4500
001 978-3-642-17977-8
003 DE-He213
005 20140220083752.0
007 cr nn 008mamaa
008 110506s2011 gw | s |||| 0|eng d
020 _a9783642179778
_9978-3-642-17977-8
024 7 _a10.1007/978-3-642-17977-8
_2doi
050 4 _aQC19.2-20.85
072 7 _aPHU
_2bicssc
072 7 _aSCI040000
_2bisacsh
082 0 4 _a530.1
_223
100 1 _aCatoni, Francesco.
_eauthor.
245 1 0 _aGeometry of Minkowski Space-Time
_h[electronic resource] /
_cby Francesco Catoni, Dino Boccaletti, Roberto Cannata, Vincenzo Catoni, Paolo Zampetti.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2011.
300 _aVIII, 114p. 28 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringerBriefs in Physics
505 0 _aIntroduction -- Hyperbolic Numbers -- Geometrical Representation of Hyperbolic Numbers -- Trigonometry in the Hyperbolic (Minkowski) Plane -- Equilateral Hyperbolas and Triangles in the Hyperbolic Plane -- The Motions in Minkowski Space-Time (Twin Paradox) -- Some Final Considerations.
520 _aThis book provides an original introduction to the geometry of Minkowski space-time. A hundred years after the space-time formulation of special relativity by Hermann Minkowski, it is shown that the kinematical consequences of special relativity are merely a manifestation of space-time geometry. The book is written with the intention of providing students (and teachers) of the first years of University courses with a tool which is easy to be applied and allows the solution of any problem of relativistic kinematics at the same time. The book treats in a rigorous way, but using a non-sophisticated mathematics, the Kinematics of Special Relativity. As an example, the famous "Twin Paradox" is completely solved for all kinds of motions. The novelty of the presentation in this book consists in the extensive use of hyperbolic numbers, the simplest extension of complex numbers, for a complete formalization of the kinematics in the Minkowski space-time. Moreover, from this formalization the understanding of gravity comes as a manifestation of curvature of space-time, suggesting new research fields.
650 0 _aPhysics.
650 0 _aMathematics.
650 1 4 _aPhysics.
650 2 4 _aTheoretical, Mathematical and Computational Physics.
650 2 4 _aApplications of Mathematics.
650 2 4 _aClassical and Quantum Gravitation, Relativity Theory.
700 1 _aBoccaletti, Dino.
_eauthor.
700 1 _aCannata, Roberto.
_eauthor.
700 1 _aCatoni, Vincenzo.
_eauthor.
700 1 _aZampetti, Paolo.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783642179761
830 0 _aSpringerBriefs in Physics
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-642-17977-8
912 _aZDB-2-PHA
999 _c107340
_d107340