000 03134nam a22004815i 4500
001 978-3-642-17404-9
003 DE-He213
005 20140220083750.0
007 cr nn 008mamaa
008 110112s2011 gw | s |||| 0|eng d
020 _a9783642174049
_9978-3-642-17404-9
024 7 _a10.1007/978-3-642-17404-9
_2doi
050 4 _aQA251.3
072 7 _aPBF
_2bicssc
072 7 _aMAT002010
_2bisacsh
082 0 4 _a512.44
_223
100 1 _aCampbell, H.E.A. Eddy.
_eauthor.
245 1 0 _aModular Invariant Theory
_h[electronic resource] /
_cby H.E.A. Eddy Campbell, David L. Wehlau.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2011.
300 _aXIV, 234 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aEncyclopaedia of Mathematical Sciences,
_x0938-0396 ;
_v139
505 0 _a1 First Steps -- 2 Elements of Algebraic Geometry and Commutative Algebra -- 3 Applications of Commutative Algebra to Invariant Theory -- 4 Examples -- 5 Monomial Orderings and SAGBI Bases -- 6 Block Bases -- 7 The Cyclic Group Cp -- 8 Polynomial Invariant Rings -- 9 The Transfer -- 10 Invariant Rings via Localization -- 11 Rings of Invariants which are Hypersurfaces -- 12 Separating Invariants -- 13 Using SAGBI Bases to Compute Rings of Invariants -- 14 Ladders -- References -- Index.
520 _aThis book covers the modular invariant theory of finite groups, the case when the characteristic of the field divides the order of the group. It explains a theory that is more complicated than the study of the classical non-modular case, and it describes many open questions. Largely self-contained, the book develops the theory from its origins up to modern results. It explores many examples, illustrating the theory and its contrast with the better understood non-modular setting. It details techniques for the computation of invariants for many modular representations of finite groups, especially the case of the cyclic group of prime order. It includes detailed examples of many topics as well as a quick survey of the elements of algebraic geometry and commutative algebra as they apply to invariant theory. The book is aimed at both graduate students and researchers—an introduction to many important topics in modern algebra within a concrete setting for the former, an exploration of a fascinating subfield of algebraic geometry for the latter.
650 0 _aMathematics.
650 0 _aAlgebra.
650 0 _aGeometry, algebraic.
650 1 4 _aMathematics.
650 2 4 _aCommutative Rings and Algebras.
650 2 4 _aAlgebra.
650 2 4 _aAlgebraic Geometry.
700 1 _aWehlau, David L.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783642174032
830 0 _aEncyclopaedia of Mathematical Sciences,
_x0938-0396 ;
_v139
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-642-17404-9
912 _aZDB-2-SMA
999 _c107249
_d107249