000 03202nam a22004815i 4500
001 978-3-642-16830-7
003 DE-He213
005 20140220083750.0
007 cr nn 008mamaa
008 110103s2011 gw | s |||| 0|eng d
020 _a9783642168307
_9978-3-642-16830-7
024 7 _a10.1007/978-3-642-16830-7
_2doi
050 4 _aQA299.6-433
072 7 _aPBK
_2bicssc
072 7 _aMAT034000
_2bisacsh
082 0 4 _a515
_223
100 1 _aBahouri, Hajer.
_eauthor.
245 1 0 _aFourier Analysis and Nonlinear Partial Differential Equations
_h[electronic resource] /
_cby Hajer Bahouri, Jean-Yves Chemin, Raphaël Danchin.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2011.
300 _aXVI, 524 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aGrundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics,
_x0072-7830 ;
_v343
505 0 _aPreface -- 1. Basic analysis -- 2. Littlewood-Paley theory -- 3. Transport and transport-diffusion equations -- 4. Quasilinear symmetric systems -- 5. Incompressible Navier-Stokes system -- 6. Anisotropic viscosity -- 7. Euler system for perfect incompressible fluids -- 8. Strichartz estimates and applications to semilinear dispersive equations -- 9. Smoothing effect in quasilinear wave equations -- 10 -- The compressible Navier-Stokes system -- References. - List of notations -- Index.
520 _aIn recent years, the Fourier analysis methods have expereinced a growing interest in the study of partial differential equations. In particular, those techniques based on the Littlewood-Paley decomposition have proved to be very efficient for the study of evolution equations. The present book aims at presenting self-contained, state- of- the- art models of those techniques with applications to different classes of partial differential equations: transport, heat, wave and Schrödinger equations.  It also offers more sophisticated models originating from fluid mechanics (in particular the incompressible and compressible Navier-Stokes equations) or general relativity. It is either directed to anyone with a good undergraduate level of knowledge in analysis or useful for experts who are eager to know the benefit that one might gain from Fourier analysis when dealing with nonlinear partial differential equations.
650 0 _aMathematics.
650 0 _aGlobal analysis (Mathematics).
650 0 _aDifferential equations, partial.
650 1 4 _aMathematics.
650 2 4 _aAnalysis.
650 2 4 _aPartial Differential Equations.
700 1 _aChemin, Jean-Yves.
_eauthor.
700 1 _aDanchin, Raphaël.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783642168291
830 0 _aGrundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics,
_x0072-7830 ;
_v343
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-642-16830-7
912 _aZDB-2-SMA
999 _c107204
_d107204