| 000 | 03163nam a22005295i 4500 | ||
|---|---|---|---|
| 001 | 978-3-642-16615-0 | ||
| 003 | DE-He213 | ||
| 005 | 20140220083749.0 | ||
| 007 | cr nn 008mamaa | ||
| 008 | 110831s2011 gw | s |||| 0|eng d | ||
| 020 |
_a9783642166150 _9978-3-642-16615-0 |
||
| 024 | 7 |
_a10.1007/978-3-642-16615-0 _2doi |
|
| 050 | 4 | _aQ334-342 | |
| 050 | 4 | _aTJ210.2-211.495 | |
| 072 | 7 |
_aUYQ _2bicssc |
|
| 072 | 7 |
_aTJFM1 _2bicssc |
|
| 072 | 7 |
_aCOM004000 _2bisacsh |
|
| 082 | 0 | 4 |
_a006.3 _223 |
| 100 | 1 |
_aMaulik, Ujjwal. _eauthor. |
|
| 245 | 1 | 0 |
_aMultiobjective Genetic Algorithms for Clustering _h[electronic resource] : _bApplications in Data Mining and Bioinformatics / _cby Ujjwal Maulik, Sanghamitra Bandyopadhyay, Anirban Mukhopadhyay. |
| 264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg, _c2011. |
|
| 300 |
_aXVI, 281p. 83 illus., 35 illus. in color. _bonline resource. |
||
| 336 |
_atext _btxt _2rdacontent |
||
| 337 |
_acomputer _bc _2rdamedia |
||
| 338 |
_aonline resource _bcr _2rdacarrier |
||
| 347 |
_atext file _bPDF _2rda |
||
| 505 | 0 | _aIntroduction -- Genetic Algorithms and Multiobjective Optimization -- Data Mining Fundamentals -- Computational Biology and Bioinformatics -- Multiobjective Genetic-Algorithm-Based Fuzzy Clustering -- Combining Pareto-Optimal Clusters Using Supervised Learning -- Two-Stage Fuzzy Clustering -- Clustering Categorical Data in a Multiobjective Framework -- Unsupervised Cancer Classification and Gene Marker Identification -- Multiobjective Biclustering in Microarray Gene Expression Data -- References -- Index. | |
| 520 | _aThis is the first book primarily dedicated to clustering using multiobjective genetic algorithms with extensive real-life applications in data mining and bioinformatics. The authors first offer detailed introductions to the relevant techniques – genetic algorithms, multiobjective optimization, soft computing, data mining and bioinformatics. They then demonstrate systematic applications of these techniques to real-world problems in the areas of data mining, bioinformatics and geoscience. The authors offer detailed theoretical and statistical notes, guides to future research, and chapter summaries. The book can be used as a textbook and as a reference book by graduate students and academic and industrial researchers in the areas of soft computing, data mining, bioinformatics and geoscience. | ||
| 650 | 0 | _aComputer science. | |
| 650 | 0 | _aData mining. | |
| 650 | 0 | _aArtificial intelligence. | |
| 650 | 0 | _aBioinformatics. | |
| 650 | 0 | _aEngineering. | |
| 650 | 1 | 4 | _aComputer Science. |
| 650 | 2 | 4 | _aArtificial Intelligence (incl. Robotics). |
| 650 | 2 | 4 | _aComputational Biology/Bioinformatics. |
| 650 | 2 | 4 | _aData Mining and Knowledge Discovery. |
| 650 | 2 | 4 | _aComputational Intelligence. |
| 700 | 1 |
_aBandyopadhyay, Sanghamitra. _eauthor. |
|
| 700 | 1 |
_aMukhopadhyay, Anirban. _eauthor. |
|
| 710 | 2 | _aSpringerLink (Online service) | |
| 773 | 0 | _tSpringer eBooks | |
| 776 | 0 | 8 |
_iPrinted edition: _z9783642166143 |
| 856 | 4 | 0 | _uhttp://dx.doi.org/10.1007/978-3-642-16615-0 |
| 912 | _aZDB-2-SCS | ||
| 999 |
_c107171 _d107171 |
||