| 000 | 02815nam a22005055i 4500 | ||
|---|---|---|---|
| 001 | 978-3-642-16286-2 | ||
| 003 | DE-He213 | ||
| 005 | 20140220083748.0 | ||
| 007 | cr nn 008mamaa | ||
| 008 | 101109s2011 gw | s |||| 0|eng d | ||
| 020 |
_a9783642162862 _9978-3-642-16286-2 |
||
| 024 | 7 |
_a10.1007/978-3-642-16286-2 _2doi |
|
| 050 | 4 | _aQA370-380 | |
| 072 | 7 |
_aPBKJ _2bicssc |
|
| 072 | 7 |
_aMAT007000 _2bisacsh |
|
| 082 | 0 | 4 |
_a515.353 _223 |
| 100 | 1 |
_aAndrews, Ben. _eauthor. |
|
| 245 | 1 | 4 |
_aThe Ricci Flow in Riemannian Geometry _h[electronic resource] : _bA Complete Proof of the Differentiable 1/4-Pinching Sphere Theorem / _cby Ben Andrews, Christopher Hopper. |
| 264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg, _c2011. |
|
| 300 |
_aX, 276p. 13 illus., 2 illus. in color. _bonline resource. |
||
| 336 |
_atext _btxt _2rdacontent |
||
| 337 |
_acomputer _bc _2rdamedia |
||
| 338 |
_aonline resource _bcr _2rdacarrier |
||
| 347 |
_atext file _bPDF _2rda |
||
| 490 | 1 |
_aLecture Notes in Mathematics, _x0075-8434 ; _v2011 |
|
| 505 | 0 | _a1 Introduction -- 2 Background Material -- 3 Harmonic Mappings -- 4 Evolution of the Curvature -- 5 Short-Time Existence -- 6 Uhlenbeck’s Trick -- 7 The Weak Maximum Principle -- 8 Regularity and Long-Time Existence -- 9 The Compactness Theorem for Riemannian Manifolds -- 10 The F-Functional and Gradient Flows -- 11 The W-Functional and Local Noncollapsing -- 12 An Algebraic Identity for Curvature Operators -- 13 The Cone Construction of Böhm and Wilking -- 14 Preserving Positive Isotropic Curvature -- 15 The Final Argument. | |
| 520 | _aThis book focuses on Hamilton's Ricci flow, beginning with a detailed discussion of the required aspects of differential geometry, progressing through existence and regularity theory, compactness theorems for Riemannian manifolds, and Perelman's noncollapsing results, and culminating in a detailed analysis of the evolution of curvature, where recent breakthroughs of Böhm and Wilking and Brendle and Schoen have led to a proof of the differentiable 1/4-pinching sphere theorem. | ||
| 650 | 0 | _aMathematics. | |
| 650 | 0 | _aGlobal analysis. | |
| 650 | 0 | _aDifferential equations, partial. | |
| 650 | 0 | _aGlobal differential geometry. | |
| 650 | 1 | 4 | _aMathematics. |
| 650 | 2 | 4 | _aPartial Differential Equations. |
| 650 | 2 | 4 | _aDifferential Geometry. |
| 650 | 2 | 4 | _aGlobal Analysis and Analysis on Manifolds. |
| 700 | 1 |
_aHopper, Christopher. _eauthor. |
|
| 710 | 2 | _aSpringerLink (Online service) | |
| 773 | 0 | _tSpringer eBooks | |
| 776 | 0 | 8 |
_iPrinted edition: _z9783642162855 |
| 830 | 0 |
_aLecture Notes in Mathematics, _x0075-8434 ; _v2011 |
|
| 856 | 4 | 0 | _uhttp://dx.doi.org/10.1007/978-3-642-16286-2 |
| 912 | _aZDB-2-SMA | ||
| 912 | _aZDB-2-LNM | ||
| 999 |
_c107141 _d107141 |
||