000 03153nam a22004335i 4500
001 978-3-642-15439-3
003 DE-He213
005 20140220083747.0
007 cr nn 008mamaa
008 110104s2011 gw | s |||| 0|eng d
020 _a9783642154393
_9978-3-642-15439-3
024 7 _a10.1007/978-3-642-15439-3
_2doi
050 4 _aQC176-176.9
072 7 _aPNFS
_2bicssc
072 7 _aSCI077000
_2bisacsh
082 0 4 _a530.41
_223
100 1 _aRace, Christopher.
_eauthor.
245 1 4 _aThe Modelling of Radiation Damage in Metals Using Ehrenfest Dynamics
_h[electronic resource] /
_cby Christopher Race.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2011.
300 _aXVI, 303 p. 134 illus., 7 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringer Theses, Recognizing Outstanding Ph.D. Research,
_x2190-5053
505 0 _aIntroduction -- A Radiation Damage Cascade -- Electronic Excitations in Radiation Damage – a Review -- Theoretical Background -- Simulating Radiation Damage in Metals. A Framework for Simulating Radiation Damage in Metals -- The Single Oscillating Ion -- Semi-calssical Simulations of Collision Cascades -- The Nature of the Electronic Excitations -- The Electronic Forces -- Channelling Ions -- The Electronic Drag Force.-Concluding Remarks -- A. Selected Proofs -- B. Petrubation Theory -- C. The coupling Matrix for a Single Oscillating Ion -- D. Some Features of the Electronic Excitation Spectrum -- E. The Strain on an Inclusion due to Electronic Heating -- Bibliography -- Index.
520 _aAtomistic simulations of metals under irradiation are indispensable for understanding damage processes at time- and length-scales beyond the reach of experiment. Previously, such simulations have largely ignored the effect of electronic excitations on the atomic dynamics, even though energy exchange between atoms and electrons can have significant effects on the extent and nature of radiation damage. This thesis presents the results of time-dependent tight-binding simulations of radiation damage, in which the evolution of a coupled system of energetic classical ions and quantum mechanical electrons is correctly described. The effects of electronic excitations in collision cascades and ion channelling are explored and a new model is presented, which makes possible the accurate reproduction of non-adiabatic electronic forces in large-scale classical molecular dynamics simulations of metals.
650 0 _aPhysics.
650 1 4 _aPhysics.
650 2 4 _aSolid State Physics.
650 2 4 _aTheoretical, Mathematical and Computational Physics.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783642154386
830 0 _aSpringer Theses, Recognizing Outstanding Ph.D. Research,
_x2190-5053
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-642-15439-3
912 _aZDB-2-PHA
999 _c107056
_d107056