000 03462nam a22004335i 4500
001 978-3-642-15358-7
003 DE-He213
005 20140220083747.0
007 cr nn 008mamaa
008 101127s2011 gw | s |||| 0|eng d
020 _a9783642153587
_9978-3-642-15358-7
024 7 _a10.1007/978-3-642-15358-7
_2doi
050 4 _aQA273.A1-274.9
050 4 _aQA274-274.9
072 7 _aPBT
_2bicssc
072 7 _aPBWL
_2bicssc
072 7 _aMAT029000
_2bisacsh
082 0 4 _a519.2
_223
100 1 _aCrisan, Dan.
_eeditor.
245 1 0 _aStochastic Analysis 2010
_h[electronic resource] /
_cedited by Dan Crisan.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2011.
300 _aVIII, 299p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 _aD.Crisan: Introduction to the Volume -- V. Bally and E. Clément: Integration by Parts Formula with Respect to Jump Times for Stochastic Differential Equations -- V. Ortiz-López and M. Sanz-Solé: A Laplace Principle for a Stochastic Wave Equation in Spatial Dimension Three -- X.-M. Li: Intertwinned Diffusions Operators by Examples -- L. G. Gyurkó and T. Lyons: Effcient and practical implementations of Cubature on Wiener space -- T. Kurtz: Equivalence of Stochastic Equations and Martingale Problems -- I. Gyöngy and N.V. Krylov: Accelerated Numerical Schemes for PDEs and SPDEs -- A. Papavasilio: Coarse-Grained Modeling of Multiscale Diffusions: The p-variation Estimates -- V.N. Stanciulescu and M.V. Tretyakov: Numerical Solution of the Dirichlet Problem for Linear Parabolic SPDEs Based on Averaging over Characteristics -- S. Davie: Individual Path Uniqueness of Solutions of Stochastic differential equations -- V. Kolokoltsov: Stochastic Integrals and SDE Driven by Nonlinear Levy Noise -- R. Tunaru: Discrete Algorithms for Multivariate Financial Calculus -- D. Brody, L. Hughston and A. Macrina: Credit Risk, Market Sentiment, and Randomly-Timed Default -- M. Kelbert and Y. Suhov: Continuity of mutual entropy in the limiting signal-to-noise ratio regimes.
520 _aStochastic Analysis aims to provide mathematical tools to describe and model high dimensional random systems. Such tools arise in the study of Stochastic Differential Equations and Stochastic Partial Differential Equations, Infinite Dimensional Stochastic Geometry, Random Media and Interacting Particle Systems, Super-processes, Stochastic Filtering, Mathematical Finance, etc. Stochastic Analysis has emerged as a core area of late 20th century Mathematics and is currently undergoing a rapid scientific development. The special volume “Stochastic Analysis 2010” provides a sample of the current research in the different branches of the subject. It includes the collected works of the participants at the Stochastic Analysis section of the 7th ISAAC Congress organized at Imperial College London in July 2009.
650 0 _aMathematics.
650 0 _aDistribution (Probability theory).
650 1 4 _aMathematics.
650 2 4 _aProbability Theory and Stochastic Processes.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783642153570
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-642-15358-7
912 _aZDB-2-SMA
999 _c107049
_d107049