000 02719nam a22004815i 4500
001 978-3-642-03545-6
003 DE-He213
005 20140220083741.0
007 cr nn 008mamaa
008 101202s2011 gw | s |||| 0|eng d
020 _a9783642035456
_9978-3-642-03545-6
024 7 _a10.1007/978-3-642-03545-6
_2doi
050 4 _aQA564-609
072 7 _aPBMW
_2bicssc
072 7 _aMAT012010
_2bisacsh
082 0 4 _a516.35
_223
100 1 _aKemper, Gregor.
_eauthor.
245 1 2 _aA Course in Commutative Algebra
_h[electronic resource] /
_cby Gregor Kemper.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2011.
300 _aXII, 248 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aGraduate Texts in Mathematics,
_x0072-5285 ;
_v256
505 0 _aIntroduction -- Part I The Algebra Geometry Lexicon: 1 Hilbert's Nullstellensatz; 2 Noetherian and Artinian Rings; 3 The Zariski Topology; 4 A Summary of the Lexicon -- Part II Dimension: 5 Krull Dimension and Transcendence Degree; 6 Localization; 7 The Principal Ideal Theorem; 8 Integral Extensions -- Part III Computational Methods: 9 Gröbner Bases; 10 Fibers and Images of Morphisms Revisited; 11 Hilbert Series and Dimension -- Part IV Local Rings: 12 Dimension Theory; 13 Regular Local Rings; 14 Rings of Dimension One -- References -- Notation -- Index.
520 _aThis textbook offers a thorough, modern introduction into commutative algebra. It is intented mainly to serve as a guide for a course of one or two semesters, or for self-study. The carefully selected subject matter concentrates on the concepts and results at the center of the field. The book maintains a constant view on the natural geometric context, enabling the reader to gain a deeper understanding of the material. Although it emphasizes theory, three chapters are devoted to computational aspects. Many illustrative examples and exercises enrich the text.
650 0 _aMathematics.
650 0 _aGeometry, algebraic.
650 0 _aAlgebra.
650 0 _aComputer science
_xMathematics.
650 1 4 _aMathematics.
650 2 4 _aAlgebraic Geometry.
650 2 4 _aCommutative Rings and Algebras.
650 2 4 _aComputational Mathematics and Numerical Analysis.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783642035449
830 0 _aGraduate Texts in Mathematics,
_x0072-5285 ;
_v256
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-642-03545-6
912 _aZDB-2-SMA
999 _c106706
_d106706