| 000 | 02719nam a22004815i 4500 | ||
|---|---|---|---|
| 001 | 978-3-642-03545-6 | ||
| 003 | DE-He213 | ||
| 005 | 20140220083741.0 | ||
| 007 | cr nn 008mamaa | ||
| 008 | 101202s2011 gw | s |||| 0|eng d | ||
| 020 |
_a9783642035456 _9978-3-642-03545-6 |
||
| 024 | 7 |
_a10.1007/978-3-642-03545-6 _2doi |
|
| 050 | 4 | _aQA564-609 | |
| 072 | 7 |
_aPBMW _2bicssc |
|
| 072 | 7 |
_aMAT012010 _2bisacsh |
|
| 082 | 0 | 4 |
_a516.35 _223 |
| 100 | 1 |
_aKemper, Gregor. _eauthor. |
|
| 245 | 1 | 2 |
_aA Course in Commutative Algebra _h[electronic resource] / _cby Gregor Kemper. |
| 264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg, _c2011. |
|
| 300 |
_aXII, 248 p. _bonline resource. |
||
| 336 |
_atext _btxt _2rdacontent |
||
| 337 |
_acomputer _bc _2rdamedia |
||
| 338 |
_aonline resource _bcr _2rdacarrier |
||
| 347 |
_atext file _bPDF _2rda |
||
| 490 | 1 |
_aGraduate Texts in Mathematics, _x0072-5285 ; _v256 |
|
| 505 | 0 | _aIntroduction -- Part I The Algebra Geometry Lexicon: 1 Hilbert's Nullstellensatz; 2 Noetherian and Artinian Rings; 3 The Zariski Topology; 4 A Summary of the Lexicon -- Part II Dimension: 5 Krull Dimension and Transcendence Degree; 6 Localization; 7 The Principal Ideal Theorem; 8 Integral Extensions -- Part III Computational Methods: 9 Gröbner Bases; 10 Fibers and Images of Morphisms Revisited; 11 Hilbert Series and Dimension -- Part IV Local Rings: 12 Dimension Theory; 13 Regular Local Rings; 14 Rings of Dimension One -- References -- Notation -- Index. | |
| 520 | _aThis textbook offers a thorough, modern introduction into commutative algebra. It is intented mainly to serve as a guide for a course of one or two semesters, or for self-study. The carefully selected subject matter concentrates on the concepts and results at the center of the field. The book maintains a constant view on the natural geometric context, enabling the reader to gain a deeper understanding of the material. Although it emphasizes theory, three chapters are devoted to computational aspects. Many illustrative examples and exercises enrich the text. | ||
| 650 | 0 | _aMathematics. | |
| 650 | 0 | _aGeometry, algebraic. | |
| 650 | 0 | _aAlgebra. | |
| 650 | 0 |
_aComputer science _xMathematics. |
|
| 650 | 1 | 4 | _aMathematics. |
| 650 | 2 | 4 | _aAlgebraic Geometry. |
| 650 | 2 | 4 | _aCommutative Rings and Algebras. |
| 650 | 2 | 4 | _aComputational Mathematics and Numerical Analysis. |
| 710 | 2 | _aSpringerLink (Online service) | |
| 773 | 0 | _tSpringer eBooks | |
| 776 | 0 | 8 |
_iPrinted edition: _z9783642035449 |
| 830 | 0 |
_aGraduate Texts in Mathematics, _x0072-5285 ; _v256 |
|
| 856 | 4 | 0 | _uhttp://dx.doi.org/10.1007/978-3-642-03545-6 |
| 912 | _aZDB-2-SMA | ||
| 999 |
_c106706 _d106706 |
||