000 03850nam a22005655i 4500
001 978-3-540-69392-5
003 DE-He213
005 20140220083740.0
007 cr nn 008mamaa
008 110310s2011 gw | s |||| 0|eng d
020 _a9783540693925
_9978-3-540-69392-5
024 7 _a10.1007/978-3-540-69392-5
_2doi
050 4 _aQA564-609
072 7 _aPBMW
_2bicssc
072 7 _aMAT012010
_2bisacsh
082 0 4 _a516.35
_223
100 1 _aArbarello, Enrico.
_eauthor.
245 1 0 _aGeometry of Algebraic Curves
_h[electronic resource] :
_bVolume II with a contribution by Joseph Daniel Harris /
_cby Enrico Arbarello, Maurizio Cornalba, Phillip A. Griffiths.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2011.
300 _aXXX, 963p. 112 illus., 30 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aGrundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics,
_x0072-7830 ;
_v268
505 0 _aPreface -- Guide to the Reader -- Chapter IX. The Hilbert Scheme -- Chapter X. Nodal curves -- Chapter XI. Elementary deformation theory and some applications -- Chapter XII. The moduli space of stable curves -- Chapter XIII. Line bundles on moduli -- Chapter XIV. The projectivity of the moduli space of stable curves -- Chapter XV. The Teichmüller point of view -- Chapter XVI. Smooth Galois covers of moduli spaces -- Chapter XVII. Cycles on the moduli spaces of stable curves -- Chapter XVIII. Cellular decomposition of moduli spaces -- Chapter XIX. First consequences of the cellular decomposition -- Chapter XX. Intersection theory of tautological classes -- Chapter XXI. Brill-Noether theory on a moving curve -- Bibliography -- Index.
520 _aThe second volume of the Geometry of Algebraic Curves is devoted to the foundations of the theory of moduli of algebraic curves. Its authors are research mathematicians who have actively participated in the development of the Geometry of Algebraic Curves. The subject is an extremely fertile and active one, both within the mathematical community and at the interface with the theoretical physics community. The approach is unique in its blending of algebro-geometric, complex analytic and topological/combinatorial methods. It treats important topics such as Teichmüller theory, the cellular decomposition of moduli and its consequences and the Witten conjecture. The careful and comprehensive presentation of the material will be of value to students who wish to learn the subject and to experts as a reference source. The first volume appeared 1985 as volume 267 of the same series.
650 0 _aMathematics.
650 0 _aGeometry, algebraic.
650 0 _aFunctions of complex variables.
650 0 _aDifferential equations, partial.
650 0 _aCombinatorics.
650 0 _aCell aggregation
_xMathematics.
650 1 4 _aMathematics.
650 2 4 _aAlgebraic Geometry.
650 2 4 _aSeveral Complex Variables and Analytic Spaces.
650 2 4 _aFunctions of a Complex Variable.
650 2 4 _aManifolds and Cell Complexes (incl. Diff.Topology).
650 2 4 _aCombinatorics.
650 2 4 _aTheoretical, Mathematical and Computational Physics.
700 1 _aCornalba, Maurizio.
_eauthor.
700 1 _aGriffiths, Phillip A.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783540426882
830 0 _aGrundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics,
_x0072-7830 ;
_v268
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-540-69392-5
912 _aZDB-2-SMA
999 _c106646
_d106646