000 02705nam a22004455i 4500
001 978-3-0348-0206-2
003 DE-He213
005 20140220083739.0
007 cr nn 008mamaa
008 110822s2011 sz | s |||| 0|eng d
020 _a9783034802062
_9978-3-0348-0206-2
024 7 _a10.1007/978-3-0348-0206-2
_2doi
050 4 _aQA313
072 7 _aPBWR
_2bicssc
072 7 _aMAT034000
_2bisacsh
082 0 4 _a515.39
_223
082 0 4 _a515.48
_223
100 1 _aBarreira, Luis.
_eauthor.
245 1 0 _aThermodynamic Formalism and Applications to Dimension Theory
_h[electronic resource] /
_cby Luis Barreira.
264 1 _aBasel :
_bSpringer Basel,
_c2011.
300 _aXII, 300 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aProgress in Mathematics ;
_v294
505 0 _aPreface -- 1 Introduction -- I Classical Thermodynamic Formalism -- 2 Thermodynamic Formalism: Basic Notions -- 3 The Case of Symbolic Dynamics -- II Nonadditive Thermodynamic Formalism -- 4 Nonadditive Thermodynamic Formalism -- 5 Dimension Estimates for Repellers -- 6 Dimension Estimates for Hyperbolic Sets -- III Subadditive Thermodynamic Formalism -- 7 Asymptotically Subadditive Sequences -- 8 Limit Sets of Geometric Constructions -- 9 Entropy Spectra -- IV Almost Additive Thermodynamic Formalism -- 10 Almost Additive Sequences -- 11 Nonconformal Repellers -- 12 Multifractal Analysis -- Bibliography.
520 _aThis self-contained monograph presents a unified exposition of the thermodynamic formalism and some of its main extensions, with emphasis on the relation to dimension theory and multifractal analysis of dynamical systems. In particular, the book considers three different flavors of the thermodynamic formalism, namely nonadditive, subadditive, and almost additive, and provides a detailed discussion of some of the most significant results in the area, some of them quite recent. It also includes a discussion of the most substantial applications of these flavors of the thermodynamic formalism to dimension theory and multifractal analysis of dynamical systems.
650 0 _aMathematics.
650 0 _aDifferentiable dynamical systems.
650 1 4 _aMathematics.
650 2 4 _aDynamical Systems and Ergodic Theory.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783034802055
830 0 _aProgress in Mathematics ;
_v294
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-0348-0206-2
912 _aZDB-2-SMA
999 _c106610
_d106610