000 02811nam a22004335i 4500
001 978-3-0348-0145-4
003 DE-He213
005 20140220083739.0
007 cr nn 008mamaa
008 110726s2011 sz | s |||| 0|eng d
020 _a9783034801454
_9978-3-0348-0145-4
024 7 _a10.1007/978-3-0348-0145-4
_2doi
050 4 _aQA299.6-433
072 7 _aPBK
_2bicssc
072 7 _aMAT034000
_2bisacsh
082 0 4 _a515
_223
100 1 _aMantegazza, Carlo.
_eauthor.
245 1 0 _aLecture Notes on Mean Curvature Flow
_h[electronic resource] /
_cby Carlo Mantegazza.
264 1 _aBasel :
_bSpringer Basel,
_c2011.
300 _aXII, 168 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aProgress in Mathematics ;
_v290
505 0 _aForeword -- Chapter 1. Definition and Short Time Existence -- Chapter 2. Evolution of Geometric Quantities -- Chapter 3. Monotonicity Formula and Type I Singularities -- Chapter 4. Type II Singularities -- Chapter 5. Conclusions and Research Directions -- Appendix A. Quasilinear Parabolic Equations on Manifolds -- Appendix B. Interior Estimates of Ecker and Huisken -- Appendix C. Hamilton’s Maximum Principle for Tensors -- Appendix D. Hamilton’s Matrix Li–Yau–Harnack Inequality in Rn -- Appendix E. Abresch and Langer Classification of Homothetically Shrinking Closed Curves -- Appendix F. Important Results without Proof in the Book -- Bibliography -- Index.
520 _aThis book is an introduction to the subject of mean curvature flow of hypersurfaces with special emphasis on the analysis of singularities. This flow occurs in the description of the evolution of numerous physical models where the energy is given by the area of the interfaces. These notes provide a detailed discussion of the classical parametric approach (mainly developed by R. Hamilton and G. Huisken). They are well suited for a course at PhD/PostDoc level and can be useful for any researcher interested in a solid introduction to the technical issues of the field. All the proofs are carefully written, often simplified, and contain several comments. Moreover, the author revisited and organized a large amount of material scattered around in literature in the last 25 years.
650 0 _aMathematics.
650 0 _aGlobal analysis (Mathematics).
650 1 4 _aMathematics.
650 2 4 _aAnalysis.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783034801447
830 0 _aProgress in Mathematics ;
_v290
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-0348-0145-4
912 _aZDB-2-SMA
999 _c106605
_d106605