| 000 | 02811nam a22004335i 4500 | ||
|---|---|---|---|
| 001 | 978-3-0348-0145-4 | ||
| 003 | DE-He213 | ||
| 005 | 20140220083739.0 | ||
| 007 | cr nn 008mamaa | ||
| 008 | 110726s2011 sz | s |||| 0|eng d | ||
| 020 |
_a9783034801454 _9978-3-0348-0145-4 |
||
| 024 | 7 |
_a10.1007/978-3-0348-0145-4 _2doi |
|
| 050 | 4 | _aQA299.6-433 | |
| 072 | 7 |
_aPBK _2bicssc |
|
| 072 | 7 |
_aMAT034000 _2bisacsh |
|
| 082 | 0 | 4 |
_a515 _223 |
| 100 | 1 |
_aMantegazza, Carlo. _eauthor. |
|
| 245 | 1 | 0 |
_aLecture Notes on Mean Curvature Flow _h[electronic resource] / _cby Carlo Mantegazza. |
| 264 | 1 |
_aBasel : _bSpringer Basel, _c2011. |
|
| 300 |
_aXII, 168 p. _bonline resource. |
||
| 336 |
_atext _btxt _2rdacontent |
||
| 337 |
_acomputer _bc _2rdamedia |
||
| 338 |
_aonline resource _bcr _2rdacarrier |
||
| 347 |
_atext file _bPDF _2rda |
||
| 490 | 1 |
_aProgress in Mathematics ; _v290 |
|
| 505 | 0 | _aForeword -- Chapter 1. Definition and Short Time Existence -- Chapter 2. Evolution of Geometric Quantities -- Chapter 3. Monotonicity Formula and Type I Singularities -- Chapter 4. Type II Singularities -- Chapter 5. Conclusions and Research Directions -- Appendix A. Quasilinear Parabolic Equations on Manifolds -- Appendix B. Interior Estimates of Ecker and Huisken -- Appendix C. Hamilton’s Maximum Principle for Tensors -- Appendix D. Hamilton’s Matrix Li–Yau–Harnack Inequality in Rn -- Appendix E. Abresch and Langer Classification of Homothetically Shrinking Closed Curves -- Appendix F. Important Results without Proof in the Book -- Bibliography -- Index. | |
| 520 | _aThis book is an introduction to the subject of mean curvature flow of hypersurfaces with special emphasis on the analysis of singularities. This flow occurs in the description of the evolution of numerous physical models where the energy is given by the area of the interfaces. These notes provide a detailed discussion of the classical parametric approach (mainly developed by R. Hamilton and G. Huisken). They are well suited for a course at PhD/PostDoc level and can be useful for any researcher interested in a solid introduction to the technical issues of the field. All the proofs are carefully written, often simplified, and contain several comments. Moreover, the author revisited and organized a large amount of material scattered around in literature in the last 25 years. | ||
| 650 | 0 | _aMathematics. | |
| 650 | 0 | _aGlobal analysis (Mathematics). | |
| 650 | 1 | 4 | _aMathematics. |
| 650 | 2 | 4 | _aAnalysis. |
| 710 | 2 | _aSpringerLink (Online service) | |
| 773 | 0 | _tSpringer eBooks | |
| 776 | 0 | 8 |
_iPrinted edition: _z9783034801447 |
| 830 | 0 |
_aProgress in Mathematics ; _v290 |
|
| 856 | 4 | 0 | _uhttp://dx.doi.org/10.1007/978-3-0348-0145-4 |
| 912 | _aZDB-2-SMA | ||
| 999 |
_c106605 _d106605 |
||