| 000 | 02828nam a22005055i 4500 | ||
|---|---|---|---|
| 001 | 978-3-0348-0110-2 | ||
| 003 | DE-He213 | ||
| 005 | 20140220083739.0 | ||
| 007 | cr nn 008mamaa | ||
| 008 | 110317s2011 sz | s |||| 0|eng d | ||
| 020 |
_a9783034801102 _9978-3-0348-0110-2 |
||
| 024 | 7 |
_a10.1007/978-3-0348-0110-2 _2doi |
|
| 050 | 4 | _aQA329-329.9 | |
| 072 | 7 |
_aPBKF _2bicssc |
|
| 072 | 7 |
_aMAT037000 _2bisacsh |
|
| 082 | 0 | 4 |
_a515.724 _223 |
| 100 | 1 |
_aColombo, Fabrizio. _eauthor. |
|
| 245 | 1 | 0 |
_aNoncommutative Functional Calculus _h[electronic resource] : _bTheory and Applications of Slice Hyperholomorphic Functions / _cby Fabrizio Colombo, Irene Sabadini, Daniele C. Struppa. |
| 264 | 1 |
_aBasel : _bSpringer Basel, _c2011. |
|
| 300 |
_aVI, 222 p. _bonline resource. |
||
| 336 |
_atext _btxt _2rdacontent |
||
| 337 |
_acomputer _bc _2rdamedia |
||
| 338 |
_aonline resource _bcr _2rdacarrier |
||
| 347 |
_atext file _bPDF _2rda |
||
| 490 | 1 |
_aProgress in Mathematics ; _v289 |
|
| 505 | 0 | _a1 Introduction -- 2 Slice monogenic functions -- 3 Functional calculus for n-tuples of operators -- 4 Quaternionic Functional Calculus -- 5 Appendix: The Riesz-Dunford functional calculus -- Bibliography -- Index. | |
| 520 | _a<i>This book presents a functional calculus for <i>n</i>-tuples of not necessarily commuting linear operators. In particular, a functional calculus for quaternionic linear operators is developed. These calculi are based on a new theory of hyperholomorphicity for functions with values in a Clifford algebra: the so-called slice monogenic functions which are carefully described in the book. In the case of functions with values in the algebra of quaternions these functions are named slice regular functions.</i> <br> <p>Except for the appendix and the introduction all results are new and appear for the first time organized in a monograph. The material has been carefully prepared to be as self-contained as possible. The intended audience consists of researchers, graduate and postgraduate students interested in operator theory, spectral theory, hypercomplex analysis, and mathematical physics.</p> | ||
| 650 | 0 | _aMathematics. | |
| 650 | 0 | _aFunctional analysis. | |
| 650 | 0 | _aFunctions of complex variables. | |
| 650 | 0 | _aOperator theory. | |
| 650 | 1 | 4 | _aMathematics. |
| 650 | 2 | 4 | _aOperator Theory. |
| 650 | 2 | 4 | _aFunctional Analysis. |
| 650 | 2 | 4 | _aFunctions of a Complex Variable. |
| 700 | 1 |
_aSabadini, Irene. _eauthor. |
|
| 700 | 1 |
_aStruppa, Daniele C. _eauthor. |
|
| 710 | 2 | _aSpringerLink (Online service) | |
| 773 | 0 | _tSpringer eBooks | |
| 776 | 0 | 8 |
_iPrinted edition: _z9783034801096 |
| 830 | 0 |
_aProgress in Mathematics ; _v289 |
|
| 856 | 4 | 0 | _uhttp://dx.doi.org/10.1007/978-3-0348-0110-2 |
| 912 | _aZDB-2-SMA | ||
| 999 |
_c106596 _d106596 |
||