000 02831nam a22004455i 4500
001 978-3-0348-0015-0
003 DE-He213
005 20140220083739.0
007 cr nn 008mamaa
008 110502s2011 sz | s |||| 0|eng d
020 _a9783034800150
_9978-3-0348-0015-0
024 7 _a10.1007/978-3-0348-0015-0
_2doi
050 4 _aQA564-609
072 7 _aPBMW
_2bicssc
072 7 _aMAT012010
_2bisacsh
082 0 4 _a516.35
_223
100 1 _aDragović, Vladimir.
_eauthor.
245 1 0 _aPoncelet Porisms and Beyond
_h[electronic resource] :
_bIntegrable Billiards, Hyperelliptic Jacobians and Pencils of Quadrics /
_cby Vladimir Dragović, Milena Radnović.
264 1 _aBasel :
_bSpringer Basel,
_c2011.
300 _aVIII, 294p. 75 illus., 1 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aFrontiers in Mathematics,
_x1660-8046
505 0 _aIntroduction to Poncelet Porisms -- Billiards – First Examples -- Hyper-Elliptic Curves and Their Jacobians -- Projective geometry -- Poncelet Theorem and Cayley’s Condition -- Poncelet–Darboux Curves and Siebeck–Marden Theorem -- Ellipsoidal Billiards and their Periodical Trajectories -- Billiard Law and Hyper-Elliptic Curves -- Poncelet Theorem and Continued Fractions -- Quantum Yang-Baxter equation and (2-2)-correspondences -- Bibliography -- Index.
520 _aThe goal of the book is to present, in a complete and comprehensive way, areas of current research interlacing around the Poncelet porism: dynamics of integrable billiards, algebraic geometry of hyperelliptic Jacobians, and classical projective geometry of pencils of quadrics. The most important results and ideas, classical as well as modern, connected to the Poncelet theorem are presented, together with a historical overview analyzing the classical ideas and their natural generalizations. Special attention is paid to the realization of the Griffiths and Harris programme about Poncelet-type problems and addition theorems. This programme, formulated three decades ago, is aimed to understanding the higher-dimensional analogues of Poncelet problems and the realization of the synthetic approach of higher genus addition theorems.
650 0 _aMathematics.
650 0 _aGeometry, algebraic.
650 1 4 _aMathematics.
650 2 4 _aAlgebraic Geometry.
700 1 _aRadnović, Milena.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783034800143
830 0 _aFrontiers in Mathematics,
_x1660-8046
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-0348-0015-0
912 _aZDB-2-SMA
999 _c106579
_d106579