000 02610nam a22004815i 4500
001 978-1-4614-0201-5
003 DE-He213
005 20140220083732.0
007 cr nn 008mamaa
008 110603s2011 xxu| s |||| 0|eng d
020 _a9781461402015
_9978-1-4614-0201-5
024 7 _a10.1007/978-1-4614-0201-5
_2doi
050 4 _aQA331.5
072 7 _aPBKB
_2bicssc
072 7 _aMAT034000
_2bisacsh
072 7 _aMAT037000
_2bisacsh
082 0 4 _a515.8
_223
100 1 _aAnastassiou, George A.
_eauthor.
245 1 0 _aInequalities Based on Sobolev Representations
_h[electronic resource] /
_cby George A. Anastassiou.
264 1 _aNew York, NY :
_bSpringer New York,
_c2011.
300 _aIX, 65p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringerBriefs in Mathematics,
_x2191-8198
505 0 _a Part 1. -Univariate Integral Inequalities based on Sobolev representations -- Introduction -- Background. -Main Results. -Applications -- References.  Part 2 -- Multivariate Integral Inequalities deriving from Sobolev representations.-Introduction.-Background.-Main Results -- Applications, References.
520 _aInequalities based on Sobolev Representations deals exclusively with very general tight integral inequalities of Chebyshev-Grüss, Ostrowski types and of integral means, all of which depend upon the Sobolev integral representations of functions.  Applications illustrate inequalities that engage in ordinary and weak partial derivatives of the involved functions. This book also derives important estimates for the averaged Taylor polynomials and remainders of Sobolev integral representations.  The results are examined in all directions and through both univariate and multivariate cases. This book is suitable for researchers, graduate students, and seminars in subareas of mathematical analysis, inequalities, partial differential equations and information theory.
650 0 _aMathematics.
650 0 _aStatistics.
650 0 _aEngineering design.
650 1 4 _aMathematics.
650 2 4 _aReal Functions.
650 2 4 _aStatistics, general.
650 2 4 _aEngineering Design.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9781461402008
830 0 _aSpringerBriefs in Mathematics,
_x2191-8198
856 4 0 _uhttp://dx.doi.org/10.1007/978-1-4614-0201-5
912 _aZDB-2-SMA
999 _c106218
_d106218