| 000 | 03848nam a22004695i 4500 | ||
|---|---|---|---|
| 001 | 978-1-4614-0195-7 | ||
| 003 | DE-He213 | ||
| 005 | 20140220083732.0 | ||
| 007 | cr nn 008mamaa | ||
| 008 | 110629s2011 xxu| s |||| 0|eng d | ||
| 020 |
_a9781461401957 _9978-1-4614-0195-7 |
||
| 024 | 7 |
_a10.1007/978-1-4614-0195-7 _2doi |
|
| 050 | 4 | _aQA331-355 | |
| 072 | 7 |
_aPBKD _2bicssc |
|
| 072 | 7 |
_aMAT034000 _2bisacsh |
|
| 082 | 0 | 4 |
_a515.9 _223 |
| 100 | 1 |
_aAgarwal, Ravi P. _eauthor. |
|
| 245 | 1 | 3 |
_aAn Introduction to Complex Analysis _h[electronic resource] / _cby Ravi P. Agarwal, Kanishka Perera, Sandra Pinelas. |
| 250 | _a1. | ||
| 264 | 1 |
_aBoston, MA : _bSpringer US, _c2011. |
|
| 300 |
_aXIV, 331p. 94 illus. _bonline resource. |
||
| 336 |
_atext _btxt _2rdacontent |
||
| 337 |
_acomputer _bc _2rdamedia |
||
| 338 |
_aonline resource _bcr _2rdacarrier |
||
| 347 |
_atext file _bPDF _2rda |
||
| 505 | 0 | _aPreface.-Complex Numbers.-Complex Numbers II -- Complex Numbers III.-Set Theory in the Complex Plane.-Complex Functions.-Analytic Functions I.-Analytic Functions II.-Elementary Functions I -- Elementary Functions II -- Mappings by Functions -- Mappings by Functions II -- Curves, Contours, and Simply Connected Domains -- Complex Integration -- Independence of Path -- Cauchy–Goursat Theorem -- Deformation Theorem -- Cauchy’s Integral Formula -- Cauchy’s Integral Formula for Derivatives -- Fundamental Theorem of Algebra -- Maximum Modulus Principle -- Sequences and Series of Numbers -- Sequences and Series of Functions -- Power Series -- Taylor’s Series -- Laurent’s Series -- Zeros of Analytic Functions -- Analytic Continuation -- Symmetry and Reflection -- Singularities and Poles I -- Singularities and Poles II -- Cauchy’s Residue Theorem -- Evaluation of Real Integrals by Contour Integration I -- Evaluation of Real Integrals by Contour Integration II -- Indented Contour Integrals -- Contour Integrals Involving Multi–valued Functions -- Summation of Series. Argument Principle and Rouch´e and Hurwitz Theorems -- Behavior of Analytic Mappings -- Conformal Mappings -- Harmonic Functions -- The Schwarz–Christoffel Transformation -- Infinite Products -- Weierstrass’s Factorization Theorem -- Mittag–Leffler’s Theorem -- Periodic Functions -- The Riemann Zeta Function -- Bieberbach’s Conjecture -- The Riemann Surface -- Julia and Mandelbrot Sets -- History of Complex Numbers -- References for Further Reading -- Index. | |
| 520 | _aThis textbook introduces the subject of complex analysis to advanced undergraduate and graduate students in a clear and concise manner. Key features of this textbook: -Effectively organizes the subject into easily manageable sections in the form of 50 class-tested lectures - Uses detailed examples to drive the presentation -Includes numerous exercise sets that encourage pursuing extensions of the material, each with an “Answers or Hints” section -covers an array of advanced topics which allow for flexibility in developing the subject beyond the basics -Provides a concise history of complex numbers An Introduction to Complex Analysis will be valuable to students in mathematics, engineering and other applied sciences. Prerequisites include a course in calculus. | ||
| 650 | 0 | _aMathematics. | |
| 650 | 0 | _aGlobal analysis (Mathematics). | |
| 650 | 0 | _aFunctions of complex variables. | |
| 650 | 1 | 4 | _aMathematics. |
| 650 | 2 | 4 | _aFunctions of a Complex Variable. |
| 650 | 2 | 4 | _aAnalysis. |
| 700 | 1 |
_aPerera, Kanishka. _eauthor. |
|
| 700 | 1 |
_aPinelas, Sandra. _eauthor. |
|
| 710 | 2 | _aSpringerLink (Online service) | |
| 773 | 0 | _tSpringer eBooks | |
| 776 | 0 | 8 |
_iPrinted edition: _z9781461401940 |
| 856 | 4 | 0 | _uhttp://dx.doi.org/10.1007/978-1-4614-0195-7 |
| 912 | _aZDB-2-SMA | ||
| 999 |
_c106217 _d106217 |
||