| 000 | 03568nam a22005055i 4500 | ||
|---|---|---|---|
| 001 | 978-1-4471-2170-1 | ||
| 003 | DE-He213 | ||
| 005 | 20140220083731.0 | ||
| 007 | cr nn 008mamaa | ||
| 008 | 110822s2011 xxk| s |||| 0|eng d | ||
| 020 |
_a9781447121701 _9978-1-4471-2170-1 |
||
| 024 | 7 |
_a10.1007/978-1-4471-2170-1 _2doi |
|
| 050 | 4 | _aQA313 | |
| 072 | 7 |
_aPBWR _2bicssc |
|
| 072 | 7 |
_aMAT034000 _2bisacsh |
|
| 082 | 0 | 4 |
_a515.39 _223 |
| 082 | 0 | 4 |
_a515.48 _223 |
| 100 | 1 |
_aGrosse-Erdmann, Karl-G. _eauthor. |
|
| 245 | 1 | 0 |
_aLinear Chaos _h[electronic resource] / _cby Karl-G. Grosse-Erdmann, Alfred Peris Manguillot. |
| 264 | 1 |
_aLondon : _bSpringer London, _c2011. |
|
| 300 |
_aXII, 388p. 28 illus. _bonline resource. |
||
| 336 |
_atext _btxt _2rdacontent |
||
| 337 |
_acomputer _bc _2rdamedia |
||
| 338 |
_aonline resource _bcr _2rdacarrier |
||
| 347 |
_atext file _bPDF _2rda |
||
| 490 | 1 |
_aUniversitext, _x0172-5939 |
|
| 505 | 0 | _aTopological dynamics -- Hypercyclic and chaotic operators -- The Hypercyclicity Criterion -- Classes of hypercyclic and chaotic operators -- Necessary conditions for hypercyclicity and chaos -- Connectedness arguments in linear dynamics -- Dynamics of semigroups, with applications to differential equations -- Existence of hypercyclic operators -- Frequently hypercyclic operators -- Hypercyclic subspaces -- Common hypercyclic vectors -- Linear dynamics in topological vector spaces. | |
| 520 | _aIt is commonly believed that chaos is linked to non-linearity, however many (even quite natural) linear dynamical systems exhibit chaotic behavior. The study of these systems is a young and remarkably active field of research, which has seen many landmark results over the past two decades. Linear dynamics lies at the crossroads of several areas of mathematics including operator theory, complex analysis, ergodic theory and partial differential equations. At the same time its basic ideas can be easily understood by a wide audience. Written by two renowned specialists, Linear Chaos provides a welcome introduction to this theory. Split into two parts, part I presents a self-contained introduction to the dynamics of linear operators, while part II covers selected, largely independent topics from linear dynamics. More than 350 exercises and many illustrations are included, and each chapter contains a further ‘Sources and Comments’ section. The only prerequisites are a familiarity with metric spaces, the basic theory of Hilbert and Banach spaces and fundamentals of complex analysis. More advanced tools, only needed occasionally, are provided in two appendices. A self-contained exposition, this book will be suitable for self-study and will appeal to advanced undergraduate or beginning graduate students. It will also be of use to researchers in other areas of mathematics such as partial differential equations, dynamical systems and ergodic theory. | ||
| 650 | 0 | _aMathematics. | |
| 650 | 0 | _aDifferentiable dynamical systems. | |
| 650 | 0 | _aFunctional analysis. | |
| 650 | 0 | _aOperator theory. | |
| 650 | 1 | 4 | _aMathematics. |
| 650 | 2 | 4 | _aDynamical Systems and Ergodic Theory. |
| 650 | 2 | 4 | _aFunctional Analysis. |
| 650 | 2 | 4 | _aOperator Theory. |
| 700 | 1 |
_aPeris Manguillot, Alfred. _eauthor. |
|
| 710 | 2 | _aSpringerLink (Online service) | |
| 773 | 0 | _tSpringer eBooks | |
| 776 | 0 | 8 |
_iPrinted edition: _z9781447121695 |
| 830 | 0 |
_aUniversitext, _x0172-5939 |
|
| 856 | 4 | 0 | _uhttp://dx.doi.org/10.1007/978-1-4471-2170-1 |
| 912 | _aZDB-2-SMA | ||
| 999 |
_c106174 _d106174 |
||