000 02482nam a22004815i 4500
001 978-1-4419-9637-4
003 DE-He213
005 20140220083729.0
007 cr nn 008mamaa
008 110408s2011 xxu| s |||| 0|eng d
020 _a9781441996374
_9978-1-4419-9637-4
024 7 _a10.1007/978-1-4419-9637-4
_2doi
050 4 _aQA431
072 7 _aPBKJ
_2bicssc
072 7 _aMAT034000
_2bisacsh
082 0 4 _a515.625
_223
082 0 4 _a515.75
_223
100 1 _aJung, Soon-Mo.
_eauthor.
245 1 0 _aHyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis
_h[electronic resource] /
_cby Soon-Mo Jung.
264 1 _aNew York, NY :
_bSpringer New York,
_c2011.
300 _aXIV, 362 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringer Optimization and Its Applications,
_x1931-6828 ;
_v48
520 _aThis textbook at the advanced undergraduate/graduate level will complement the books of D.H. Hyers, G. Isac, and Th.M. Rassias (© Birkhauser 1998) and of S. Czerwik (2002) by integrating and presenting the primary developments applying to almost all the classical results of  the Hyers-Ulam-Rassias stability. The self-contained text is presented in an easy to understand fashion and all the necessary materials and information are included in order to appeal to a diverse audience with interests in difference and functional equations and functional analysis. Highlights of the text include discussions of the method of invariant means and the fixed point method,  the stability problems for the exponential functional equations, Hyers-Ulam stability, Hyers-Ulam-Rassias stability, Pexider equation, and superstability of the exponential function.
650 0 _aMathematics.
650 0 _aGlobal analysis (Mathematics).
650 0 _aFunctional equations.
650 0 _aFunctional analysis.
650 1 4 _aMathematics.
650 2 4 _aDifference and Functional Equations.
650 2 4 _aAnalysis.
650 2 4 _aFunctional Analysis.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9781441996367
830 0 _aSpringer Optimization and Its Applications,
_x1931-6828 ;
_v48
856 4 0 _uhttp://dx.doi.org/10.1007/978-1-4419-9637-4
912 _aZDB-2-SMA
999 _c106089
_d106089