| 000 | 03291nam a22005415i 4500 | ||
|---|---|---|---|
| 001 | 978-1-4419-7847-9 | ||
| 003 | DE-He213 | ||
| 005 | 20140220083725.0 | ||
| 007 | cr nn 008mamaa | ||
| 008 | 101110s2011 xxu| s |||| 0|eng d | ||
| 020 |
_a9781441978479 _9978-1-4419-7847-9 |
||
| 024 | 7 |
_a10.1007/978-1-4419-7847-9 _2doi |
|
| 050 | 4 | _aQA564-609 | |
| 072 | 7 |
_aPBMW _2bicssc |
|
| 072 | 7 |
_aMAT012010 _2bisacsh |
|
| 082 | 0 | 4 |
_a516.35 _223 |
| 100 | 1 |
_aFarkas, Hershel M. _eauthor. |
|
| 245 | 1 | 0 |
_aGeneralizations of Thomae's Formula for Zn Curves _h[electronic resource] / _cby Hershel M. Farkas, Shaul Zemel. |
| 264 | 1 |
_aNew York, NY : _bSpringer New York, _c2011. |
|
| 300 |
_aXVII, 354 p. _bonline resource. |
||
| 336 |
_atext _btxt _2rdacontent |
||
| 337 |
_acomputer _bc _2rdamedia |
||
| 338 |
_aonline resource _bcr _2rdacarrier |
||
| 347 |
_atext file _bPDF _2rda |
||
| 490 | 1 |
_aDevelopments in Mathematics, Diophantine Approximation: Festschrift for Wolfgang Schmidt, _x1389-2177 ; _v21 |
|
| 505 | 0 | _a- Introduction.- 1. Riemann Surfaces -- 2. Zn Curves -- 3. Examples of Thomae Formulae -- 4. Thomae Formulae for Nonsingular Zn Curves -- 5. Thomae Formulae for Singular Zn Curves.-6. Some More Singular Zn Curves.-Appendix A. Constructions and Generalizations for the Nonsingular and Singular Cases.-Appendix B. The Construction and Basepoint Change Formulae for the Symmetric Equation Case.-References.-List of Symbols.-Index. | |
| 520 | _aThis book provides a comprehensive overview of the theory of theta functions, as applied to compact Riemann surfaces, as well as the necessary background for understanding and proving the Thomae formulae. The exposition examines the properties of a particular class of compact Riemann surfaces, i.e., the Zn curves, and thereafter focuses on how to prove the Thomae formulae, which give a relation between the algebraic parameters of the Zn curve, and the theta constants associated with the Zn curve. Graduate students in mathematics will benefit from the classical material, connecting Riemann surfaces, algebraic curves, and theta functions, while young researchers, whose interests are related to complex analysis, algebraic geometry, and number theory, will find new rich areas to explore. Mathematical physicists and physicists with interests also in conformal field theory will surely appreciate the beauty of this subject. | ||
| 650 | 0 | _aMathematics. | |
| 650 | 0 | _aGeometry, algebraic. | |
| 650 | 0 | _aFunctions of complex variables. | |
| 650 | 0 | _aDifferential equations, partial. | |
| 650 | 0 | _aFunctions, special. | |
| 650 | 0 | _aNumber theory. | |
| 650 | 1 | 4 | _aMathematics. |
| 650 | 2 | 4 | _aAlgebraic Geometry. |
| 650 | 2 | 4 | _aFunctions of a Complex Variable. |
| 650 | 2 | 4 | _aSeveral Complex Variables and Analytic Spaces. |
| 650 | 2 | 4 | _aSpecial Functions. |
| 650 | 2 | 4 | _aNumber Theory. |
| 700 | 1 |
_aZemel, Shaul. _eauthor. |
|
| 710 | 2 | _aSpringerLink (Online service) | |
| 773 | 0 | _tSpringer eBooks | |
| 776 | 0 | 8 |
_iPrinted edition: _z9781441978462 |
| 830 | 0 |
_aDevelopments in Mathematics, Diophantine Approximation: Festschrift for Wolfgang Schmidt, _x1389-2177 ; _v21 |
|
| 856 | 4 | 0 | _uhttp://dx.doi.org/10.1007/978-1-4419-7847-9 |
| 912 | _aZDB-2-SMA | ||
| 999 |
_c105872 _d105872 |
||