| 000 | 03670nam a22004815i 4500 | ||
|---|---|---|---|
| 001 | 978-1-4419-7765-6 | ||
| 003 | DE-He213 | ||
| 005 | 20140220083725.0 | ||
| 007 | cr nn 008mamaa | ||
| 008 | 110115s2011 xxu| s |||| 0|eng d | ||
| 020 |
_a9781441977656 _9978-1-4419-7765-6 |
||
| 024 | 7 |
_a10.1007/978-1-4419-7765-6 _2doi |
|
| 050 | 4 | _aTJ265 | |
| 050 | 4 | _aQC319.8-338.5 | |
| 072 | 7 |
_aTGMB _2bicssc |
|
| 072 | 7 |
_aSCI065000 _2bisacsh |
|
| 082 | 0 | 4 |
_a621.4021 _223 |
| 100 | 1 |
_aHaslach Jr., Henry W. _eauthor. |
|
| 245 | 1 | 0 |
_aMaximum Dissipation Non-Equilibrium Thermodynamics and its Geometric Structure _h[electronic resource] / _cby Henry W. Haslach Jr. |
| 264 | 1 |
_aNew York, NY : _bSpringer New York : _bImprint: Springer, _c2011. |
|
| 300 |
_aXI, 312p. 50 illus. _bonline resource. |
||
| 336 |
_atext _btxt _2rdacontent |
||
| 337 |
_acomputer _bc _2rdamedia |
||
| 338 |
_aonline resource _bcr _2rdacarrier |
||
| 347 |
_atext file _bPDF _2rda |
||
| 505 | 0 | _aHistory of Non-Equilibrium Thermodynamics -- Energy Methods -- Evolution Construction for Homogeneous Thermodynamic Systems -- Viscoelasticity -- Viscoplasticity -- The Thermodynamic Relaxation Modulus as a Multi-scale Bridge from the Atomic Level to the Bulk Material -- Contact Geometric Structure for Non-equilibrium Thermodynamics. Bifurcations in the Generalized Energy Function -- Evolution Construction for Non-homogeneous Thermodynamic Systems -- Electromagnetism and Joule Heating -- Fracture. . | |
| 520 | _aMaximum Dissipation Non-Equilibrium Thermodynamics and its Geometric Structure explores the thermodynamics of non-equilibrium processes in materials. The book develops a general technique to construct nonlinear evolution equations describing non-equilibrium processes, while also developing a geometric context for non-equilibrium thermodynamics. Solid materials are the main focus in this volume, but the construction is shown to also apply to fluids. This volume also: • Explains the theory behind a thermodynamically-consistent construction of non-linear evolution equations for non-equilibrium processes, based on supplementing the second law with a maximum dissipation criterion • Provides a geometric setting for non-equilibrium thermodynamics in differential topology and, in particular, contact structures that generalize Gibbs • Models processes that include thermoviscoelasticity, thermoviscoplasticity, thermoelectricity and dynamic fracture • Recovers several standard time-dependent constitutive models as maximum dissipation processes • Produces transport models that predict finite velocity of propagation • Emphasizes applications to the time-dependent modeling of soft biological tissue Maximum Dissipation Non-Equilibrium Thermodynamics and its Geometric Structure will be valuable for researchers, engineers and graduate students in non-equilibrium thermodynamics and the mathematical modeling of material behavior. | ||
| 650 | 0 | _aEngineering. | |
| 650 | 0 | _aThermodynamics. | |
| 650 | 0 | _aMechanical engineering. | |
| 650 | 0 | _aBiomaterials. | |
| 650 | 1 | 4 | _aEngineering. |
| 650 | 2 | 4 | _aEngineering Thermodynamics, Heat and Mass Transfer. |
| 650 | 2 | 4 | _aThermodynamics. |
| 650 | 2 | 4 | _aBiomaterials. |
| 650 | 2 | 4 | _aMechanical Engineering. |
| 710 | 2 | _aSpringerLink (Online service) | |
| 773 | 0 | _tSpringer eBooks | |
| 776 | 0 | 8 |
_iPrinted edition: _z9781441977649 |
| 856 | 4 | 0 | _uhttp://dx.doi.org/10.1007/978-1-4419-7765-6 |
| 912 | _aZDB-2-ENG | ||
| 999 |
_c105851 _d105851 |
||