000 03426nam a22005055i 4500
001 978-1-4419-7515-7
003 DE-He213
005 20140220083724.0
007 cr nn 008mamaa
008 110202s2011 xxu| s |||| 0|eng d
020 _a9781441975157
_9978-1-4419-7515-7
024 7 _a10.1007/978-1-4419-7515-7
_2doi
050 4 _aQA319-329.9
072 7 _aPBKF
_2bicssc
072 7 _aMAT037000
_2bisacsh
082 0 4 _a515.7
_223
100 1 _aFabian, Marián.
_eauthor.
245 1 0 _aBanach Space Theory
_h[electronic resource] :
_bThe Basis for Linear and Nonlinear Analysis /
_cby Marián Fabian, Petr Habala, Petr Hájek, Vicente Montesinos, Václav Zizler.
264 1 _aNew York, NY :
_bSpringer New York,
_c2011.
300 _aXIV, 822p. 40 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aCMS Books in Mathematics, Ouvrages de mathématiques de la SMC,
_x1613-5237
505 0 _aPreface -- Basic Concepts in Banach Spaces -- Hahn-Banach and Banach Open Mapping Theorems -- Weak Topologies and Banach Spaces -- Schauder Bases -- Structure of Banach Spaces -- Finite-Dimensional Spaces -- Optimization -- C^1 Smoothness in Separable Spaces -- Superreflexive Spaces -- Higher Order Smoothness -- Dentability and differentiability -- Basics in Nonlinear Geometric Analysis -- Weakly Compactly Generated Spaces -- Topics in Weak Topologies on Banach Spaces -- Compact Operators on Banach Spaces -- Tensor Products -- Appendix -- References -- Symbol Index -- Subject Index -- Author Index.
520 _aBanach spaces provide a framework for linear and nonlinear functional analysis, operator theory, abstract analysis, probability, optimization and other branches of mathematics. This book introduces the reader to linear functional analysis and to related parts of infinite-dimensional Banach space theory. Key Features: - Develops classical theory, including weak topologies, locally convex space, Schauder bases and compact operator theory - Covers Radon-Nikodým property, finite-dimensional spaces and local theory on tensor products - Contains sections on uniform homeomorphisms and non-linear theory, Rosenthal's L1 theorem, fixed points, and more - Includes information about further topics and directions of research and some open problems at the end of each chapter - Provides numerous exercises for practice The text is suitable for graduate courses or for independent study. Prerequisites include basic courses in calculus and linear. Researchers in functional analysis will also benefit for this book as it can serve as a reference book.
650 0 _aMathematics.
650 0 _aFunctional analysis.
650 0 _aTopology.
650 1 4 _aMathematics.
650 2 4 _aFunctional Analysis.
650 2 4 _aTopology.
700 1 _aHabala, Petr.
_eauthor.
700 1 _aHájek, Petr.
_eauthor.
700 1 _aMontesinos, Vicente.
_eauthor.
700 1 _aZizler, Václav.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9781441975140
830 0 _aCMS Books in Mathematics, Ouvrages de mathématiques de la SMC,
_x1613-5237
856 4 0 _uhttp://dx.doi.org/10.1007/978-1-4419-7515-7
912 _aZDB-2-SMA
999 _c105784
_d105784