| 000 | 03374nam a22005415i 4500 | ||
|---|---|---|---|
| 001 | 978-0-85729-160-8 | ||
| 003 | DE-He213 | ||
| 005 | 20140220083712.0 | ||
| 007 | cr nn 008mamaa | ||
| 008 | 101112s2011 xxk| s |||| 0|eng d | ||
| 020 |
_a9780857291608 _9978-0-85729-160-8 |
||
| 024 | 7 |
_a10.1007/978-0-85729-160-8 _2doi |
|
| 050 | 4 | _aQA150-272 | |
| 072 | 7 |
_aPBF _2bicssc |
|
| 072 | 7 |
_aMAT002000 _2bisacsh |
|
| 082 | 0 | 4 |
_a512 _223 |
| 100 | 1 |
_aIohara, Kenji. _eauthor. |
|
| 245 | 1 | 0 |
_aRepresentation Theory of the Virasoro Algebra _h[electronic resource] / _cby Kenji Iohara, Yoshiyuki Koga. |
| 264 | 1 |
_aLondon : _bSpringer London, _c2011. |
|
| 300 |
_aXVIII, 474 p. _bonline resource. |
||
| 336 |
_atext _btxt _2rdacontent |
||
| 337 |
_acomputer _bc _2rdamedia |
||
| 338 |
_aonline resource _bcr _2rdacarrier |
||
| 347 |
_atext file _bPDF _2rda |
||
| 490 | 1 |
_aSpringer Monographs in Mathematics, _x1439-7382 |
|
| 505 | 0 | _aPreliminary -- Classification of Harish-Chandra Modules -- The Jantzen Filtration -- Determinant Formulae -- Verma Modules I: Preliminaries -- Verma Modules II: Structure Theorem -- A Duality among Verma Modules -- Fock Modules -- Rational Vertex Operator Algebras -- Coset Constructions for sl2 -- Unitarisable Harish-Chandra Modules -- Homological Algebras -- Lie p-algebras -- Vertex Operator Algebras. | |
| 520 | _aThe Virasoro algebra is an infinite dimensional Lie algebra that plays an increasingly important role in mathematics and theoretical physics. This book describes some fundamental facts about the representation theory of the Virasoro algebra in a self-contained manner. Topics include the structure of Verma modules and Fock modules, the classification of (unitarizable) Harish-Chandra modules, tilting equivalence, and the rational vertex operator algebras associated to the so-called minimal series representations. Covering a wide range of material, this book has three appendices which provide background information required for some of the chapters. Fundamental results areĀ organizedĀ in a unified way and existing proofs refined. For instance in chapter three, a generalization of Jantzen filtration is reformulated in an algebraic manner, and geometric interpretation is provided. Statements, widely believed to be true, are collated, and results which are known but not verified are proven, such as the corrected structure theorem of Fock modules in chapter eight. This book will be of interest to a wide range of mathematicians and physicists from the level of graduate students to researchers. | ||
| 650 | 0 | _aMathematics. | |
| 650 | 0 | _aAlgebra. | |
| 650 | 0 | _aTopological Groups. | |
| 650 | 0 | _aFunctions, special. | |
| 650 | 0 | _aCombinatorics. | |
| 650 | 1 | 4 | _aMathematics. |
| 650 | 2 | 4 | _aAlgebra. |
| 650 | 2 | 4 | _aNon-associative Rings and Algebras. |
| 650 | 2 | 4 | _aTheoretical, Mathematical and Computational Physics. |
| 650 | 2 | 4 | _aTopological Groups, Lie Groups. |
| 650 | 2 | 4 | _aSpecial Functions. |
| 650 | 2 | 4 | _aCombinatorics. |
| 700 | 1 |
_aKoga, Yoshiyuki. _eauthor. |
|
| 710 | 2 | _aSpringerLink (Online service) | |
| 773 | 0 | _tSpringer eBooks | |
| 776 | 0 | 8 |
_iPrinted edition: _z9780857291592 |
| 830 | 0 |
_aSpringer Monographs in Mathematics, _x1439-7382 |
|
| 856 | 4 | 0 | _uhttp://dx.doi.org/10.1007/978-0-85729-160-8 |
| 912 | _aZDB-2-SMA | ||
| 999 |
_c105145 _d105145 |
||