000 03374nam a22005415i 4500
001 978-0-85729-160-8
003 DE-He213
005 20140220083712.0
007 cr nn 008mamaa
008 101112s2011 xxk| s |||| 0|eng d
020 _a9780857291608
_9978-0-85729-160-8
024 7 _a10.1007/978-0-85729-160-8
_2doi
050 4 _aQA150-272
072 7 _aPBF
_2bicssc
072 7 _aMAT002000
_2bisacsh
082 0 4 _a512
_223
100 1 _aIohara, Kenji.
_eauthor.
245 1 0 _aRepresentation Theory of the Virasoro Algebra
_h[electronic resource] /
_cby Kenji Iohara, Yoshiyuki Koga.
264 1 _aLondon :
_bSpringer London,
_c2011.
300 _aXVIII, 474 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringer Monographs in Mathematics,
_x1439-7382
505 0 _aPreliminary -- Classification of Harish-Chandra Modules -- The Jantzen Filtration -- Determinant Formulae -- Verma Modules I: Preliminaries -- Verma Modules II: Structure Theorem -- A Duality among Verma Modules -- Fock Modules -- Rational Vertex Operator Algebras -- Coset Constructions for sl2 -- Unitarisable Harish-Chandra Modules -- Homological Algebras -- Lie p-algebras -- Vertex Operator Algebras.
520 _aThe Virasoro algebra is an infinite dimensional Lie algebra that plays an increasingly important role in mathematics and theoretical physics. This book describes some fundamental facts about the representation theory of the Virasoro algebra in a self-contained manner. Topics include the structure of Verma modules and Fock modules, the classification of (unitarizable) Harish-Chandra modules, tilting equivalence, and the rational vertex operator algebras associated to the so-called minimal series representations. Covering a wide range of material, this book has three appendices which provide background information required for some of the chapters. Fundamental results areĀ organizedĀ in a unified way and existing proofs refined. For instance in chapter three, a generalization of Jantzen filtration is reformulated in an algebraic manner, and geometric interpretation is provided. Statements, widely believed to be true, are collated, and results which are known but not verified are proven, such as the corrected structure theorem of Fock modules in chapter eight. This book will be of interest to a wide range of mathematicians and physicists from the level of graduate students to researchers.
650 0 _aMathematics.
650 0 _aAlgebra.
650 0 _aTopological Groups.
650 0 _aFunctions, special.
650 0 _aCombinatorics.
650 1 4 _aMathematics.
650 2 4 _aAlgebra.
650 2 4 _aNon-associative Rings and Algebras.
650 2 4 _aTheoretical, Mathematical and Computational Physics.
650 2 4 _aTopological Groups, Lie Groups.
650 2 4 _aSpecial Functions.
650 2 4 _aCombinatorics.
700 1 _aKoga, Yoshiyuki.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9780857291592
830 0 _aSpringer Monographs in Mathematics,
_x1439-7382
856 4 0 _uhttp://dx.doi.org/10.1007/978-0-85729-160-8
912 _aZDB-2-SMA
999 _c105145
_d105145