000 02669nam a22004335i 4500
001 978-0-85729-154-7
003 DE-He213
005 20140220083712.0
007 cr nn 008mamaa
008 110103s2011 xxk| s |||| 0|eng d
020 _a9780857291547
_9978-0-85729-154-7
024 7 _a10.1007/978-0-85729-154-7
_2doi
050 4 _aT385
072 7 _aUML
_2bicssc
072 7 _aCOM012000
_2bisacsh
082 0 4 _a006.6
_223
100 1 _aVince, John.
_eauthor.
245 1 0 _aRotation Transforms for Computer Graphics
_h[electronic resource] /
_cby John Vince.
264 1 _aLondon :
_bSpringer London,
_c2011.
300 _aXVI, 258p. 106 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 _aIntroduction -- Complex Numbers -- Vectors -- Matrices.-Quaternions -- Multivectors -- Rotation Transforms in the Plane.-Frames of Reference in the Plane -- Rotation Transforms in Space -- Frames of Reference in Space -- Quaternion Transforms in Space -- Bivector Rotors -- Conclusion -- Appendix A: Composite Point Rotation Sequences -- Appendix B: Composite Frame Rotation Sequences -- Appendix C: The Four n-Square Algebras -- Index.
520 _aRotation transforms are used everywhere in computer graphics from rotating pictures in editing software, to providing an arbitrary view of a 3D virtual environment. Although the former is a trivial operation, the latter can be a challenging task. Rotation Transforms for Computer Graphics covers a wide range of mathematical techniques used for rotating points and frames of reference in the plane and 3D space. It includes many worked examples and over 100 illustrations that make it essential reading for students, academics, researchers and professional practitioners.  The book includes introductory chapters on complex numbers, matrices, quaternions and geometric algebra, and further chapters on how these techniques are employed in 2D and 3D computer graphics. In particular, matrix and bivector transforms are developed and evaluated to rotate points in a fixed frame of reference, and vice versa.
650 0 _aComputer science.
650 0 _aComputer graphics.
650 0 _aMathematics.
650 1 4 _aComputer Science.
650 2 4 _aComputer Graphics.
650 2 4 _aMathematics, general.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9780857291530
856 4 0 _uhttp://dx.doi.org/10.1007/978-0-85729-154-7
912 _aZDB-2-SCS
999 _c105143
_d105143