000 02402nam a22004575i 4500
001 978-0-85729-121-9
003 DE-He213
005 20140220083712.0
007 cr nn 008mamaa
008 110110s2011 xxk| s |||| 0|eng d
020 _a9780857291219
_9978-0-85729-121-9
024 7 _a10.1007/978-0-85729-121-9
_2doi
050 4 _aQA75.5-76.95
072 7 _aUY
_2bicssc
072 7 _aUYA
_2bicssc
072 7 _aCOM014000
_2bisacsh
072 7 _aCOM031000
_2bisacsh
082 0 4 _a004.0151
_223
100 1 _aDowek, Gilles.
_eauthor.
245 1 0 _aProofs and Algorithms
_h[electronic resource] :
_bAn Introduction to Logic and Computability /
_cby Gilles Dowek.
264 1 _aLondon :
_bSpringer London,
_c2011.
300 _aVIII, 195p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aUndergraduate Topics in Computer Science,
_x1863-7310
520 _aProofs and Algorithms: An Introduction to Logic and Computability Logic is a branch of philosophy, mathematics and computer science. It studies the required methods to determine whether a statement is true, such as reasoning and computation. Proofs and Algorithms: An Introduction to Logic and Computability is an introduction to the fundamental concepts of contemporary logic - those of a proof, a computable function, a model and a set. It presents a series of results, both positive and negative, - Church's undecidability theorem, Gödel’s incompleteness theorem, the theorem asserting the semi-decidability of provability - that have profoundly changed our vision of reasoning, computation, and finally truth itself. Designed for undergraduate students, this book presents all that philosophers, mathematicians and computer scientists should know about logic.
650 0 _aComputer science.
650 0 _aInformation theory.
650 1 4 _aComputer Science.
650 2 4 _aTheory of Computation.
650 2 4 _aMathematical Logic and Formal Languages.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9780857291202
830 0 _aUndergraduate Topics in Computer Science,
_x1863-7310
856 4 0 _uhttp://dx.doi.org/10.1007/978-0-85729-121-9
912 _aZDB-2-SCS
999 _c105135
_d105135