| 000 | 03958nam a22005415i 4500 | ||
|---|---|---|---|
| 001 | 978-0-8176-8117-3 | ||
| 003 | DE-He213 | ||
| 005 | 20140220083711.0 | ||
| 007 | cr nn 008mamaa | ||
| 008 | 110615s2011 xxu| s |||| 0|eng d | ||
| 020 |
_a9780817681173 _9978-0-8176-8117-3 |
||
| 024 | 7 |
_a10.1007/978-0-8176-8117-3 _2doi |
|
| 050 | 4 | _aQA370-380 | |
| 072 | 7 |
_aPBKJ _2bicssc |
|
| 072 | 7 |
_aMAT007000 _2bisacsh |
|
| 082 | 0 | 4 |
_a515.353 _223 |
| 100 | 1 |
_aRabinowitz, Paul H. _eauthor. |
|
| 245 | 1 | 0 |
_aExtensions of Moser–Bangert Theory _h[electronic resource] : _bLocally Minimal Solutions / _cby Paul H. Rabinowitz, Edward W. Stredulinsky. |
| 264 | 1 |
_aBoston : _bBirkhäuser Boston, _c2011. |
|
| 300 |
_aVIII, 208p. _bonline resource. |
||
| 336 |
_atext _btxt _2rdacontent |
||
| 337 |
_acomputer _bc _2rdamedia |
||
| 338 |
_aonline resource _bcr _2rdacarrier |
||
| 347 |
_atext file _bPDF _2rda |
||
| 490 | 1 |
_aProgress in Nonlinear Differential Equations and Their Applications ; _v81 |
|
| 505 | 0 | _a1 Introduction -- Part I: Basic Solutions -- 2 Function Spaces and the First Renormalized Functional -- 3 The Simplest Heteroclinics -- 4 Heteroclinics in x1 and x2 -- 5 More Basic Solutions -- Part II: Shadowing Results -- 6 The Simplest Cases -- 7 The Proof of Theorem 6.8 -- 8 k-Transition Solutions for k > 2 -- 9 Monotone 2-Transition Solutions -- 10 Monotone Multitransition Solutions -- 11 A Mixed Case -- Part III: Solutions of (PDE) Defined on R^2 x T^{n-2} -- 12 A Class of Strictly 1-Monotone Infinite Transition Solutions of (PDE) -- 13 Solutions of (PDE) with Two Transitions in x1 and Heteroclinic Behavior in x2. | |
| 520 | _aWith the goal of establishing a version for partial differential equations (PDEs) of the Aubry–Mather theory of monotone twist maps, Moser and then Bangert studied solutions of their model equations that possessed certain minimality and monotonicity properties. This monograph presents extensions of the Moser–Bangert approach that include solutions of a family of nonlinear elliptic PDEs on Rn and an Allen–Cahn PDE model of phase transitions. After recalling the relevant Moser–Bangert results, Extensions of Moser–Bangert Theory pursues the rich structure of the set of solutions of a simpler model case, expanding upon the studies of Moser and Bangert to include solutions that merely have local minimality properties. Subsequent chapters build upon the introductory results, making the monograph self contained. Part I introduces a variational approach involving a renormalized functional to characterize the basic heteroclinic solutions obtained by Bangert. Following that, Parts II and III employ these basic solutions together with constrained minimization methods to construct multitransition heteroclinic and homoclinic solutions on R×Tn-1 and R2×Tn-2, respectively, as local minima of the renormalized functional. The work is intended for mathematicians who specialize in partial differential equations and may also be used as a text for a graduate topics course in PDEs. | ||
| 650 | 0 | _aMathematics. | |
| 650 | 0 | _aFood science. | |
| 650 | 0 | _aGlobal analysis (Mathematics). | |
| 650 | 0 | _aDifferentiable dynamical systems. | |
| 650 | 0 | _aDifferential equations, partial. | |
| 650 | 0 | _aMathematical optimization. | |
| 650 | 1 | 4 | _aMathematics. |
| 650 | 2 | 4 | _aPartial Differential Equations. |
| 650 | 2 | 4 | _aCalculus of Variations and Optimal Control; Optimization. |
| 650 | 2 | 4 | _aDynamical Systems and Ergodic Theory. |
| 650 | 2 | 4 | _aAnalysis. |
| 650 | 2 | 4 | _aFood Science. |
| 700 | 1 |
_aStredulinsky, Edward W. _eauthor. |
|
| 710 | 2 | _aSpringerLink (Online service) | |
| 773 | 0 | _tSpringer eBooks | |
| 776 | 0 | 8 |
_iPrinted edition: _z9780817681166 |
| 830 | 0 |
_aProgress in Nonlinear Differential Equations and Their Applications ; _v81 |
|
| 856 | 4 | 0 | _uhttp://dx.doi.org/10.1007/978-0-8176-8117-3 |
| 912 | _aZDB-2-SMA | ||
| 999 |
_c105097 _d105097 |
||