000 03958nam a22005415i 4500
001 978-0-8176-8117-3
003 DE-He213
005 20140220083711.0
007 cr nn 008mamaa
008 110615s2011 xxu| s |||| 0|eng d
020 _a9780817681173
_9978-0-8176-8117-3
024 7 _a10.1007/978-0-8176-8117-3
_2doi
050 4 _aQA370-380
072 7 _aPBKJ
_2bicssc
072 7 _aMAT007000
_2bisacsh
082 0 4 _a515.353
_223
100 1 _aRabinowitz, Paul H.
_eauthor.
245 1 0 _aExtensions of Moser–Bangert Theory
_h[electronic resource] :
_bLocally Minimal Solutions /
_cby Paul H. Rabinowitz, Edward W. Stredulinsky.
264 1 _aBoston :
_bBirkhäuser Boston,
_c2011.
300 _aVIII, 208p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aProgress in Nonlinear Differential Equations and Their Applications ;
_v81
505 0 _a1 Introduction -- Part I: Basic Solutions -- 2 Function Spaces and the First Renormalized Functional -- 3 The Simplest Heteroclinics -- 4 Heteroclinics in x1 and x2 -- 5 More Basic Solutions -- Part II: Shadowing Results -- 6 The Simplest Cases -- 7 The Proof of Theorem 6.8 -- 8 k-Transition Solutions for k > 2 -- 9 Monotone 2-Transition Solutions -- 10 Monotone Multitransition Solutions -- 11 A Mixed Case -- Part III: Solutions of (PDE) Defined on R^2 x T^{n-2} -- 12 A Class of Strictly 1-Monotone Infinite Transition Solutions of (PDE) -- 13 Solutions of (PDE) with Two Transitions in x1 and Heteroclinic Behavior in x2.
520 _aWith the goal of establishing a version for partial differential equations (PDEs) of the Aubry–Mather theory of monotone twist maps, Moser and then Bangert studied solutions of their model equations that possessed certain minimality and monotonicity properties. This monograph presents extensions of the Moser–Bangert approach that include solutions of a family of nonlinear elliptic PDEs on Rn and an Allen–Cahn PDE model of phase transitions. After recalling the relevant Moser–Bangert results, Extensions of Moser–Bangert Theory pursues the rich structure of the set of solutions of a simpler model case, expanding upon the studies of Moser and Bangert to include solutions that merely have local minimality properties. Subsequent chapters build upon the introductory results, making the monograph self contained. Part I introduces a variational approach involving a renormalized functional to characterize the basic heteroclinic solutions obtained by Bangert. Following that, Parts II and III employ these basic solutions together with constrained minimization methods to construct multitransition heteroclinic and homoclinic solutions on R×Tn-1 and R2×Tn-2, respectively, as local minima of the renormalized functional. The work is intended for mathematicians who specialize in partial differential equations and may also be used as a text for a graduate topics course in PDEs.
650 0 _aMathematics.
650 0 _aFood science.
650 0 _aGlobal analysis (Mathematics).
650 0 _aDifferentiable dynamical systems.
650 0 _aDifferential equations, partial.
650 0 _aMathematical optimization.
650 1 4 _aMathematics.
650 2 4 _aPartial Differential Equations.
650 2 4 _aCalculus of Variations and Optimal Control; Optimization.
650 2 4 _aDynamical Systems and Ergodic Theory.
650 2 4 _aAnalysis.
650 2 4 _aFood Science.
700 1 _aStredulinsky, Edward W.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9780817681166
830 0 _aProgress in Nonlinear Differential Equations and Their Applications ;
_v81
856 4 0 _uhttp://dx.doi.org/10.1007/978-0-8176-8117-3
912 _aZDB-2-SMA
999 _c105097
_d105097