000 03462nam a22004935i 4500
001 978-94-007-0196-0
003 DE-He213
005 20140220083337.0
007 cr nn 008mamaa
008 120131s2012 ne | s |||| 0|eng d
020 _a9789400701960
_9978-94-007-0196-0
024 7 _a10.1007/978-94-007-0196-0
_2doi
050 4 _aQC173.96-174.52
072 7 _aPHQ
_2bicssc
072 7 _aSCI057000
_2bisacsh
082 0 4 _a530.12
_223
100 1 _aCombescure, Monique.
_eauthor.
245 1 0 _aCoherent States and Applications in Mathematical Physics
_h[electronic resource] /
_cby Monique Combescure, Didier Robert.
264 1 _aDordrecht :
_bSpringer Netherlands,
_c2012.
300 _aXIII, 415p. 3 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aTheoretical and Mathematical Physics,
_x1864-5879
505 0 _aThe standard coherent states of quantum mechanics -- The Weyl-Heisenberg group and the coherent states of arbitrary profile -- The coherent states of the Harmonic Oscillator -- From Schrödinger to Fock-Bargmann representation.-  Weyl quantization and coherent states: Classical and Quantum observables -- Wigner function -- Coherent states and operator norm estimates -- Product rule and applications -- Husimi functions, frequency sets and propagation -- The Wick and anti-Wick quantization -- The generalized coherent states in the sense of Perelomov -- The SU(1,1) coherent states: Definition and properties -- The squeezed states -- The SU(2) coherent states -- The quantum quadratic Hamiltonians: The propagator of quadratic quantum Hamiltonians -- The metaplectic transformations -- The propagation of coherent states -- Representation of the Weyl symbols of the metaplectic operators -- The semiclassical evolution of coherent states -- The van Vleck and Hermann-Kluk approximations -- The semiclassical Gutzwiller trace formula using coherent states decomposition -- The hydrogen atom coherent states: Definition and properties -- The localization around Kepler orbits -- The quantum singular oscillator: The two-body case -- The N-body case.
520 _aThis book presents the various types of coherent states introduced and studied in the physics and mathematics literature and describes their properties together with application to quantum physics problems. It is intended to serve as a compendium on coherent states and their applications for physicists and mathematicians, stretching from the basic mathematical structures of generalized coherent states in the sense of Perelomov via the semiclassical evolution of coherent states to various specific examples of coherent states (hydrogen atom, quantum oscillator, ...).
650 0 _aPhysics.
650 0 _aMathematics.
650 0 _aQuantum theory.
650 0 _aMathematical physics.
650 1 4 _aPhysics.
650 2 4 _aQuantum Physics.
650 2 4 _aApplications of Mathematics.
650 2 4 _aMathematical Methods in Physics.
700 1 _aRobert, Didier.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9789400701953
830 0 _aTheoretical and Mathematical Physics,
_x1864-5879
856 4 0 _uhttp://dx.doi.org/10.1007/978-94-007-0196-0
912 _aZDB-2-PHA
999 _c104272
_d104272