| 000 | 02913nam a22003975i 4500 | ||
|---|---|---|---|
| 001 | 978-3-8348-2376-2 | ||
| 003 | DE-He213 | ||
| 005 | 20140220083332.0 | ||
| 007 | cr nn 008mamaa | ||
| 008 | 130228s2012 gw | s |||| 0|eng d | ||
| 020 |
_a9783834823762 _9978-3-8348-2376-2 |
||
| 024 | 7 |
_a10.1007/978-3-8348-2376-2 _2doi |
|
| 050 | 4 | _aQC1-75 | |
| 072 | 7 |
_aPH _2bicssc |
|
| 072 | 7 |
_aSCI055000 _2bisacsh |
|
| 082 | 0 | 4 |
_a530 _223 |
| 100 | 1 |
_aKrüger, Timm. _eauthor. |
|
| 245 | 1 | 0 |
_aComputer Simulation Study of Collective Phenomena in Dense Suspensions of Red Blood Cells under Shear _h[electronic resource] / _cby Timm Krüger. |
| 264 | 1 |
_aWiesbaden : _bVieweg+Teubner Verlag : _bImprint: Vieweg+Teubner Verlag, _c2012. |
|
| 300 |
_aXIII, 163 p. _bonline resource. |
||
| 336 |
_atext _btxt _2rdacontent |
||
| 337 |
_acomputer _bc _2rdamedia |
||
| 338 |
_aonline resource _bcr _2rdacarrier |
||
| 347 |
_atext file _bPDF _2rda |
||
| 505 | 0 | _aComplex fluids and their rheology -- Physics of red blood cells and hemorheology -- Numerical model for simulations of red blood cell suspensions -- Physical considerations and ingredients for the numerical model -- Fluid solver: the lattice Boltzmann method -- Fluid-structure interaction: the immersed boundary method -- Membrane model and energetics -- Stress evaluation in combined immersed boundary lattice Boltzmann simulations -- Rheology and microscopic behavior of red blood cell suspensions. | |
| 520 | _aThe rheology of dense red blood cell suspensions is investigated via computer simulations based on the lattice Boltzmann, the immersed boundary, and the finite element methods. The red blood cells are treated as extended and deformable particles immersed in the ambient fluid. In the first part of the work, the numerical model and strategies for stress evaluation are discussed. In the second part, the behavior of the suspensions in simple shear flow is studied for different volume fractions, particle deformabilities, and shear rates. Shear thinning behavior is recovered. The existence of a shear-induced transition from a tumbling to a tank-treading motion is demonstrated. The transition can be parameterized by a single quantity, namely the effective capillary number. It is the ratio of the suspension stress and the characteristic particle membrane stress. At the transition point, a strong increase in the orientational order of the red blood cells and a significant decrease of the particle diffusivity are observed. However, the average cell deformation shows no signature of the transition. | ||
| 650 | 0 | _aPhysics. | |
| 650 | 1 | 4 | _aPhysics. |
| 650 | 2 | 4 | _aPhysics, general. |
| 710 | 2 | _aSpringerLink (Online service) | |
| 773 | 0 | _tSpringer eBooks | |
| 776 | 0 | 8 |
_iPrinted edition: _z9783834823755 |
| 856 | 4 | 0 | _uhttp://dx.doi.org/10.1007/978-3-8348-2376-2 |
| 912 | _aZDB-2-PHA | ||
| 999 |
_c103966 _d103966 |
||