000 03439nam a22005175i 4500
001 978-3-642-33974-5
003 DE-He213
005 20140220083328.0
007 cr nn 008mamaa
008 121026s2012 gw | s |||| 0|eng d
020 _a9783642339745
_9978-3-642-33974-5
024 7 _a10.1007/978-3-642-33974-5
_2doi
050 4 _aQA75.5-76.95
072 7 _aUY
_2bicssc
072 7 _aUYA
_2bicssc
072 7 _aCOM014000
_2bisacsh
072 7 _aCOM031000
_2bisacsh
082 0 4 _a004.0151
_223
100 1 _aŽivný, Stanislav.
_eauthor.
245 1 4 _aThe Complexity of Valued Constraint Satisfaction Problems
_h[electronic resource] /
_cby Stanislav Živný.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2012.
300 _aXVII, 170 p. 23 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aCognitive Technologies,
_x1611-2482
505 0 _aChap. 1 Introduction -- Chap. 2 Background -- Chap. 3 Expressibility of Valued Constraints -- Chap. 4 Expressibility of Fixed-Arity Languages -- Chap. 5 Expressibility of Submodular Languages -- Chap. 6 Non-expressibility of Submodular Languages -- Chap. 7 Tractable Languages -- Chap. 8  Conservative Languages -- Chap. 9 The Power of Linear Programming -- Chap. 10 Hybrid Tractability -- Chap. 11 Summary and Open Problems -- References -- Index.
520 _aThe topic of this book is the following optimisation problem: given a set of discrete variables and a set of functions, each depending on a subset of the variables, minimise the sum of the functions over all variables. This fundamental research problem has been studied within several different contexts of discrete mathematics, computer science and artificial intelligence under different names: Min-Sum problems, MAP inference in Markov random fields (MRFs) and conditional random fields (CRFs), Gibbs energy minimisation, valued constraint satisfaction problems (VCSPs), and, for two-state variables, pseudo-Boolean optimisation. In this book the author presents general techniques for analysing the structure of such functions and the computational complexity of the minimisation problem, and he gives a comprehensive list of tractable cases. Moreover, he demonstrates that the so-called algebraic approach to VCSPs can be used not only for the search for tractable  VCSPs, but also for other questions such as finding the boundaries to the applicability of certain algorithmic techniques. The book is suitable for researchers interested in methods and results from the area of constraint programming and discrete optimisation.
650 0 _aComputer science.
650 0 _aInformation theory.
650 0 _aArtificial intelligence.
650 0 _aLogic, Symbolic and mathematical.
650 1 4 _aComputer Science.
650 2 4 _aTheory of Computation.
650 2 4 _aArtificial Intelligence (incl. Robotics).
650 2 4 _aMathematical Logic and Foundations.
650 2 4 _aMathematics of Computing.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783642339738
830 0 _aCognitive Technologies,
_x1611-2482
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-642-33974-5
912 _aZDB-2-SCS
999 _c103708
_d103708