| 000 | 03169nam a22005055i 4500 | ||
|---|---|---|---|
| 001 | 978-3-642-29511-9 | ||
| 003 | DE-He213 | ||
| 005 | 20140220083316.0 | ||
| 007 | cr nn 008mamaa | ||
| 008 | 120625s2012 gw | s |||| 0|eng d | ||
| 020 |
_a9783642295119 _9978-3-642-29511-9 |
||
| 024 | 7 |
_a10.1007/978-3-642-29511-9 _2doi |
|
| 050 | 4 | _aQA401-425 | |
| 050 | 4 | _aQC19.2-20.85 | |
| 072 | 7 |
_aPHU _2bicssc |
|
| 072 | 7 |
_aSCI040000 _2bisacsh |
|
| 082 | 0 | 4 |
_a530.15 _223 |
| 100 | 1 |
_aRivasseau, Vincent. _eauthor. |
|
| 245 | 1 | 0 |
_aQuantum Many Body Systems _h[electronic resource] : _bCetraro, Italy 2010, Editors: Alessandro Giuliani, Vieri Mastropietro, Jakob Yngvason / _cby Vincent Rivasseau, Robert Seiringer, Jan Philip Solovej, Thomas Spencer. |
| 264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg : _bImprint: Springer, _c2012. |
|
| 300 |
_aXIII, 180 p. 11 illus., 1 illus. in color. _bonline resource. |
||
| 336 |
_atext _btxt _2rdacontent |
||
| 337 |
_acomputer _bc _2rdamedia |
||
| 338 |
_aonline resource _bcr _2rdacarrier |
||
| 347 |
_atext file _bPDF _2rda |
||
| 490 | 1 |
_aLecture Notes in Mathematics, _x0075-8434 ; _v2051 |
|
| 505 | 0 | _a 1.Introduction to the Renormalization Group with Applications to Non-Relativistic Quantum Electron Gases. Vincent Rivasseau -- 2.Cold Quantum Gases and Bose-Einstein Condensation. Robert Seiringer -- 3. Quantum Coulomb gases. Jan Philip Solovey -- 4. SUSY Statistical Mechanics and Random Band Matrices. Thomas Spencer. | |
| 520 | _aThe book is based on the lectures given at the CIME school "Quantum many body systems" held in the summer of 2010. It provides a tutorial introduction to recent advances in the mathematics of interacting systems, written by four leading experts in the field: V. Rivasseau illustrates the applications of constructive Quantum Field Theory to 2D interacting electrons and their relation to quantum gravity; R. Seiringer describes a proof of Bose-Einstein condensation in the Gross-Pitaevski limit and explains the effects of rotating traps and the emergence of lattices of quantized vortices; J.-P. Solovej gives an introduction to the theory of quantum Coulomb systems and to the functional analytic methods used to prove their thermodynamic stability; finally, T. Spencer explains the supersymmetric approach to Anderson localization and its relation to the theory of random matrices. All the lectures are characterized by their mathematical rigor combined with physical insights. | ||
| 650 | 0 | _aMathematics. | |
| 650 | 1 | 4 | _aMathematics. |
| 650 | 2 | 4 | _aMathematical Physics. |
| 650 | 2 | 4 | _aQuantum Gases and Condensates. |
| 650 | 2 | 4 | _aStrongly Correlated Systems, Superconductivity. |
| 700 | 1 |
_aSeiringer, Robert. _eauthor. |
|
| 700 | 1 |
_aSolovej, Jan Philip. _eauthor. |
|
| 700 | 1 |
_aSpencer, Thomas. _eauthor. |
|
| 710 | 2 | _aSpringerLink (Online service) | |
| 773 | 0 | _tSpringer eBooks | |
| 776 | 0 | 8 |
_iPrinted edition: _z9783642295102 |
| 830 | 0 |
_aLecture Notes in Mathematics, _x0075-8434 ; _v2051 |
|
| 856 | 4 | 0 | _uhttp://dx.doi.org/10.1007/978-3-642-29511-9 |
| 912 | _aZDB-2-SMA | ||
| 912 | _aZDB-2-LNM | ||
| 999 |
_c103045 _d103045 |
||