000 03183nam a22005055i 4500
001 978-3-642-29393-1
003 DE-He213
005 20140220083316.0
007 cr nn 008mamaa
008 120516s2012 gw | s |||| 0|eng d
020 _a9783642293931
_9978-3-642-29393-1
024 7 _a10.1007/978-3-642-29393-1
_2doi
050 4 _aQC450-467
050 4 _aQC718.5.S6
072 7 _aPNFS
_2bicssc
072 7 _aPDND
_2bicssc
072 7 _aSCI078000
_2bisacsh
082 0 4 _a621.36
_223
100 1 _aFinkler, Amit.
_eauthor.
245 1 0 _aScanning SQUID Microscope for Studying Vortex Matter in Type-II Superconductors
_h[electronic resource] /
_cby Amit Finkler.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2012.
300 _aXIII, 62 p. 40 illus., 17 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringer Theses, Recognizing Outstanding Ph.D. Research,
_x2190-5053
505 0 _aIntroduction -- Scientific Background -- Open Questions -- Goal -- Methods -- SQUID-on-tip Fabrication -- Tuning Fork Assembly -- Scanning SQUID Microscopy -- Fabrication of Samples -- Results -- SQUID-on-tip Characterization -- Imaging -- Discussion -- Appendices.
520 _aCommon methods of local magnetic imaging display either a high spatial resolution and relatively poor field sensitivity (MFM, Lorentz microscopy), or a relatively high field sensitivity but limited spatial resolution (scanning SQUID microscopy). Since the magnetic field of a nanoparticle or nanostructure decays rapidly with distance from the structure, the achievable spatial resolution is ultimately limited by the probe-sample separation. This thesis presents a novel method for fabricating the smallest superconducting quantum interference device (SQUID) that resides on the apex of a very sharp tip. The nanoSQUID-on-tip displays a characteristic size down to 100 nm and a field sensitivity of 10^-3 Gauss/Hz^(1/2). A scanning SQUID microsope was constructed by gluing the nanoSQUID-on-tipĀ  to a quartz tuning-fork. This enabled the nanoSQUID to be scanned within nanometers of the sample surface, providing simultaneous images of sample topography and the magnetic field distribution. This microscope represents a significant improvement over the existing scanning SQUID techniques and is expected to be able to image the spin of a single electron.
650 0 _aPhysics.
650 0 _aMagnetism.
650 0 _aNanotechnology.
650 1 4 _aPhysics.
650 2 4 _aSpectroscopy and Microscopy.
650 2 4 _aMagnetism, Magnetic Materials.
650 2 4 _aNanotechnology.
650 2 4 _aStrongly Correlated Systems, Superconductivity.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783642293924
830 0 _aSpringer Theses, Recognizing Outstanding Ph.D. Research,
_x2190-5053
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-642-29393-1
912 _aZDB-2-PHA
999 _c103024
_d103024