| 000 | 03183nam a22005055i 4500 | ||
|---|---|---|---|
| 001 | 978-3-642-29393-1 | ||
| 003 | DE-He213 | ||
| 005 | 20140220083316.0 | ||
| 007 | cr nn 008mamaa | ||
| 008 | 120516s2012 gw | s |||| 0|eng d | ||
| 020 |
_a9783642293931 _9978-3-642-29393-1 |
||
| 024 | 7 |
_a10.1007/978-3-642-29393-1 _2doi |
|
| 050 | 4 | _aQC450-467 | |
| 050 | 4 | _aQC718.5.S6 | |
| 072 | 7 |
_aPNFS _2bicssc |
|
| 072 | 7 |
_aPDND _2bicssc |
|
| 072 | 7 |
_aSCI078000 _2bisacsh |
|
| 082 | 0 | 4 |
_a621.36 _223 |
| 100 | 1 |
_aFinkler, Amit. _eauthor. |
|
| 245 | 1 | 0 |
_aScanning SQUID Microscope for Studying Vortex Matter in Type-II Superconductors _h[electronic resource] / _cby Amit Finkler. |
| 264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg : _bImprint: Springer, _c2012. |
|
| 300 |
_aXIII, 62 p. 40 illus., 17 illus. in color. _bonline resource. |
||
| 336 |
_atext _btxt _2rdacontent |
||
| 337 |
_acomputer _bc _2rdamedia |
||
| 338 |
_aonline resource _bcr _2rdacarrier |
||
| 347 |
_atext file _bPDF _2rda |
||
| 490 | 1 |
_aSpringer Theses, Recognizing Outstanding Ph.D. Research, _x2190-5053 |
|
| 505 | 0 | _aIntroduction -- Scientific Background -- Open Questions -- Goal -- Methods -- SQUID-on-tip Fabrication -- Tuning Fork Assembly -- Scanning SQUID Microscopy -- Fabrication of Samples -- Results -- SQUID-on-tip Characterization -- Imaging -- Discussion -- Appendices. | |
| 520 | _aCommon methods of local magnetic imaging display either a high spatial resolution and relatively poor field sensitivity (MFM, Lorentz microscopy), or a relatively high field sensitivity but limited spatial resolution (scanning SQUID microscopy). Since the magnetic field of a nanoparticle or nanostructure decays rapidly with distance from the structure, the achievable spatial resolution is ultimately limited by the probe-sample separation. This thesis presents a novel method for fabricating the smallest superconducting quantum interference device (SQUID) that resides on the apex of a very sharp tip. The nanoSQUID-on-tip displays a characteristic size down to 100 nm and a field sensitivity of 10^-3 Gauss/Hz^(1/2). A scanning SQUID microsope was constructed by gluing the nanoSQUID-on-tipĀ to a quartz tuning-fork. This enabled the nanoSQUID to be scanned within nanometers of the sample surface, providing simultaneous images of sample topography and the magnetic field distribution. This microscope represents a significant improvement over the existing scanning SQUID techniques and is expected to be able to image the spin of a single electron. | ||
| 650 | 0 | _aPhysics. | |
| 650 | 0 | _aMagnetism. | |
| 650 | 0 | _aNanotechnology. | |
| 650 | 1 | 4 | _aPhysics. |
| 650 | 2 | 4 | _aSpectroscopy and Microscopy. |
| 650 | 2 | 4 | _aMagnetism, Magnetic Materials. |
| 650 | 2 | 4 | _aNanotechnology. |
| 650 | 2 | 4 | _aStrongly Correlated Systems, Superconductivity. |
| 710 | 2 | _aSpringerLink (Online service) | |
| 773 | 0 | _tSpringer eBooks | |
| 776 | 0 | 8 |
_iPrinted edition: _z9783642293924 |
| 830 | 0 |
_aSpringer Theses, Recognizing Outstanding Ph.D. Research, _x2190-5053 |
|
| 856 | 4 | 0 | _uhttp://dx.doi.org/10.1007/978-3-642-29393-1 |
| 912 | _aZDB-2-PHA | ||
| 999 |
_c103024 _d103024 |
||