000 03646nam a22005895i 4500
001 978-3-642-28512-7
003 DE-He213
005 20140220083312.0
007 cr nn 008mamaa
008 120521s2012 gw | s |||| 0|eng d
020 _a9783642285127
_9978-3-642-28512-7
024 7 _a10.1007/978-3-642-28512-7
_2doi
050 4 _aT57-57.97
072 7 _aPBW
_2bicssc
072 7 _aMAT003000
_2bisacsh
082 0 4 _a519
_223
100 1 _aZgurovsky, Mikhail Z.
_eauthor.
245 1 0 _aEvolution Inclusions and Variation Inequalities for Earth Data Processing III
_h[electronic resource] :
_bLong-Time Behavior of Evolution Inclusions Solutions in Earth Data Analysis /
_cby Mikhail Z. Zgurovsky, Pavlo O. Kasyanov, Oleksiy V. Kapustyan, José Valero, Nina V. Zadoianchuk.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2012.
300 _aXLI, 330 p. 27 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aAdvances in Mechanics and Mathematics,
_x1571-8689 ;
_v27
505 0 _aIntroduction: Long-time Behaviour of Evolution Inclusions Solutions in Earth Data Analysis -- Part I Long-time Behaviour of Autonomous Differential-Operator Systems Solutions for Earth Data Processing: Abstract Theory of Multivalued Semiflows -- Auxiliary Properties of Evolution Inclusions Solutions for Earth Data Processing -- Attractors for Lattice Dynamical Systems -- Part II Long-time Behaviour of Nonautonomous Differential-Operator Systems Solutions for Earth Data Processing: On Global Attractors of Multivalued Semiprocesses and Nonautonomous Evolution Inclusions -- On the Kneser Property for the Complex Ginzburg-Landau Equation and the Lotka-Volterra System with Diffusion -- Pullback Attractors for a Class of Extremal Solutions of the 3D Navier-Stokes System -- Properties of Resolving Operator for Nonautonomous Evolution Inclusions: Pullback Attractors -- Functional Spaces. The Embedding and Approximation Theorems.
520 _aIn this sequel to two earlier volumes, the authors now focus on the long-time behavior of evolution inclusions, based on the theory of extremal solutions to differential-operator problems. This approach is used to solve problems in climate research, geophysics, aerohydrodynamics, chemical kinetics or fluid dynamics. As in the previous volumes, the authors present a toolbox of mathematical equations. The book is based on seminars and lecture courses on multi-valued and non-linear analysis and their geophysical application.
650 0 _aMathematics.
650 0 _aChemistry, Physical organic.
650 0 _aPhysical geography.
650 0 _aPhysics.
650 0 _aEngineering.
650 0 _aHydraulic engineering.
650 1 4 _aMathematics.
650 2 4 _aApplications of Mathematics.
650 2 4 _aGeophysics and Environmental Physics.
650 2 4 _aGeophysics/Geodesy.
650 2 4 _aEngineering Fluid Dynamics.
650 2 4 _aPhysical Chemistry.
650 2 4 _aComplexity.
700 1 _aKasyanov, Pavlo O.
_eauthor.
700 1 _aKapustyan, Oleksiy V.
_eauthor.
700 1 _aValero, José.
_eauthor.
700 1 _aZadoianchuk, Nina V.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783642285110
830 0 _aAdvances in Mechanics and Mathematics,
_x1571-8689 ;
_v27
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-642-28512-7
912 _aZDB-2-SMA
999 _c102827
_d102827