000 02420nam a22004695i 4500
001 978-3-642-28329-1
003 DE-He213
005 20140220083311.0
007 cr nn 008mamaa
008 120731s2012 gw | s |||| 0|eng d
020 _a9783642283291
_9978-3-642-28329-1
024 7 _a10.1007/978-3-642-28329-1
_2doi
050 4 _aQC178
050 4 _aQC173.5-173.65
072 7 _aPHDV
_2bicssc
072 7 _aPHR
_2bicssc
072 7 _aSCI033000
_2bisacsh
082 0 4 _a530.1
_223
100 1 _aDragon, Norbert.
_eauthor.
245 1 4 _aThe Geometry of Special Relativity - a Concise Course
_h[electronic resource] /
_cby Norbert Dragon.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2012.
300 _aVIII, 143 p. 33 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringerBriefs in Physics,
_x2191-5423
505 0 _aStructures of Spacetime.-  Time and Distance -- Transformations -- Relativistic Particles -- Electrodynamics.- The Lorentz Group --  References -- Index.
520 _aIn this concise primer it is shown that, with simple diagrams, the phenomena of time dilatation, length contraction and Lorentz transformations can be deduced from the fact that in a vacuum one cannot distinguish physically straight and uniform motion from rest, and that the speed of light does not depend on the speed of either the source or the observer. The text proceeds to derive the important results of relativistic physics and to resolve its apparent paradoxes. A short introduction into the covariant formulation of electrodynamics is also given. This publication addresses, in particular, students of physics and mathematics in their final undergraduate year.
650 0 _aPhysics.
650 1 4 _aPhysics.
650 2 4 _aClassical and Quantum Gravitation, Relativity Theory.
650 2 4 _aMathematical Applications in the Physical Sciences.
650 2 4 _aClassical Continuum Physics.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783642283284
830 0 _aSpringerBriefs in Physics,
_x2191-5423
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-642-28329-1
912 _aZDB-2-PHA
999 _c102785
_d102785