000 04320nam a22005895i 4500
001 978-3-642-24007-2
003 DE-He213
005 20140220083302.0
007 cr nn 008mamaa
008 120824s2012 gw | s |||| 0|eng d
020 _a9783642240072
_9978-3-642-24007-2
024 7 _a10.1007/978-3-642-24007-2
_2doi
050 4 _aQA276-280
072 7 _aPBT
_2bicssc
072 7 _aMAT029000
_2bisacsh
082 0 4 _a519.5
_223
100 1 _aLin, Dan.
_eeditor.
245 1 0 _aModeling Dose-Response Microarray Data in Early Drug Development Experiments Using R
_h[electronic resource] :
_bOrder-Restricted Analysis of Microarray Data /
_cedited by Dan Lin, Ziv Shkedy, Daniel Yekutieli, Dhammika Amaratunga, Luc Bijnens.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2012.
300 _aXV, 282 p. 96 illus., 4 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aUse R!
505 0 _aIntroduction -- Part I: Dose-response Modeling: An Introduction -- Estimation Under Order Restrictions -- The Likelihood Ratio Test -- Part II: Dose-response Microarray Experiments -- Functional Genomic Dose-response Experiments -- Adjustment for Multiplicity -- Test for Trend -- Order Restricted Bisclusters -- Classification of Trends in Dose-response Microarray Experiments Using Information Theory Selection Methods -- Multiple Contrast Test -- Confidence Intervals for the Selected Parameters -- Case Study Using GUI in R: Gene Expression Analysis After Acute Treatment With Antipsychotics.
520 _aThis book focuses on the analysis of dose-response microarray data in pharmaceutical setting, the goal being to cover this important topic for early drug development and to provide user-friendly R packages that can be used to analyze dose-response microarray data. It is intended for biostatisticians and bioinformaticians in the pharmaceutical industry, biologists, and biostatistics/bioinformatics graduate students. Part I of the book is an introduction, in which we discuss the dose-response setting and the problem of estimating normal means under order restrictions. In particular, we discuss the pooled-adjacent-violator (PAV) algorithm and isotonic regression, as well as the likelihood ratio test and non-linear parametric models, which are used in the second part of the book.  Part II is the core of the book. Methodological topics discussed include: ·         Multiplicity adjustment ·         Test statistics and testing procedures for the analysis of dose-response microarray data ·         Resampling-based inference and use of the SAM method at the presence of small-variance genes in the data ·         Identification and classification of dose-response curve shapes ·         Clustering of order restricted (but not necessarily monotone) dose-response profiles ·         Hierarchical Bayesian models and non-linear models for dose-response microarray data ·         Multiple contrast tests All methodological issues in the book are illustrated using four “real-world” examples of dose-response microarray datasets from early drug development experiments.
650 0 _aStatistics.
650 0 _aPharmaceutical technology.
650 0 _aBioinformatics.
650 0 _aStatistical methods.
650 0 _aBiology
_xData processing.
650 0 _aMathematical statistics.
650 1 4 _aStatistics.
650 2 4 _aStatistics, general.
650 2 4 _aStatistics and Computing/Statistics Programs.
650 2 4 _aPharmaceutical Sciences/Technology.
650 2 4 _aBiostatistics.
650 2 4 _aBioinformatics.
650 2 4 _aComputer Appl. in Life Sciences.
700 1 _aShkedy, Ziv.
_eeditor.
700 1 _aYekutieli, Daniel.
_eeditor.
700 1 _aAmaratunga, Dhammika.
_eeditor.
700 1 _aBijnens, Luc.
_eeditor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783642240065
830 0 _aUse R!
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-642-24007-2
912 _aZDB-2-SMA
999 _c102248
_d102248