| 000 | 03291nam a22005175i 4500 | ||
|---|---|---|---|
| 001 | 978-3-642-22717-2 | ||
| 003 | DE-He213 | ||
| 005 | 20140220083259.0 | ||
| 007 | cr nn 008mamaa | ||
| 008 | 111024s2012 gw | s |||| 0|eng d | ||
| 020 |
_a9783642227172 _9978-3-642-22717-2 |
||
| 024 | 7 |
_a10.1007/978-3-642-22717-2 _2doi |
|
| 050 | 4 | _aQC5.53 | |
| 072 | 7 |
_aPHU _2bicssc |
|
| 072 | 7 |
_aSCI040000 _2bisacsh |
|
| 082 | 0 | 4 |
_a530.15 _223 |
| 100 | 1 |
_aUnterberger, Jérémie. _eauthor. |
|
| 245 | 1 | 4 |
_aThe Schrödinger-Virasoro Algebra _h[electronic resource] : _bMathematical structure and dynamical Schrödinger symmetries / _cby Jérémie Unterberger, Claude Roger. |
| 264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg : _bImprint: Springer, _c2012. |
|
| 300 |
_aXLII, 302 p. _bonline resource. |
||
| 336 |
_atext _btxt _2rdacontent |
||
| 337 |
_acomputer _bc _2rdamedia |
||
| 338 |
_aonline resource _bcr _2rdacarrier |
||
| 347 |
_atext file _bPDF _2rda |
||
| 490 | 1 |
_aTheoretical and Mathematical Physics, _x1864-5879 |
|
| 505 | 0 | _aIntroduction -- Geometric Definitions of SV -- Basic Algebraic and Geometric Features -- Coadjoint Representaion -- Induced Representations and Verma Modules -- Coinduced Representations -- Vertex Representations -- Cohomology, Extensions and Deformations -- Action of sv on Schrödinger and Dirac Operators -- Monodromy of Schrödinger Operators -- Poisson Structures and Schrödinger Operators -- Supersymmetric Extensions of sv -- Appendix to chapter 6 -- Appendix to chapter 11 -- Index. | |
| 520 | _aThis monograph provides the first up-to-date and self-contained presentation of a recently discovered mathematical structure—the Schrödinger-Virasoro algebra. Just as Poincaré invariance or conformal (Virasoro) invariance play a key role in understanding, respectively, elementary particles and two-dimensional equilibrium statistical physics, this algebra of non-relativistic conformal symmetries may be expected to apply itself naturally to the study of some models of non-equilibrium statistical physics, or more specifically in the context of recent developments related to the non-relativistic AdS/CFT correspondence. The study of the structure of this infinite-dimensional Lie algebra touches upon topics as various as statistical physics, vertex algebras, Poisson geometry, integrable systems and supergeometry as well as representation theory, the cohomology of infinite-dimensional Lie algebras, and the spectral theory of Schrödinger operators. . | ||
| 650 | 0 | _aPhysics. | |
| 650 | 0 | _aAlgebra. | |
| 650 | 0 | _aTopological Groups. | |
| 650 | 0 | _aMathematical physics. | |
| 650 | 1 | 4 | _aPhysics. |
| 650 | 2 | 4 | _aMathematical Methods in Physics. |
| 650 | 2 | 4 | _aTopological Groups, Lie Groups. |
| 650 | 2 | 4 | _aMathematical Physics. |
| 650 | 2 | 4 | _aCategory Theory, Homological Algebra. |
| 650 | 2 | 4 | _aStatistical Physics, Dynamical Systems and Complexity. |
| 700 | 1 |
_aRoger, Claude. _eauthor. |
|
| 710 | 2 | _aSpringerLink (Online service) | |
| 773 | 0 | _tSpringer eBooks | |
| 776 | 0 | 8 |
_iPrinted edition: _z9783642227165 |
| 830 | 0 |
_aTheoretical and Mathematical Physics, _x1864-5879 |
|
| 856 | 4 | 0 | _uhttp://dx.doi.org/10.1007/978-3-642-22717-2 |
| 912 | _aZDB-2-PHA | ||
| 999 |
_c102077 _d102077 |
||