000 03291nam a22005175i 4500
001 978-3-642-22717-2
003 DE-He213
005 20140220083259.0
007 cr nn 008mamaa
008 111024s2012 gw | s |||| 0|eng d
020 _a9783642227172
_9978-3-642-22717-2
024 7 _a10.1007/978-3-642-22717-2
_2doi
050 4 _aQC5.53
072 7 _aPHU
_2bicssc
072 7 _aSCI040000
_2bisacsh
082 0 4 _a530.15
_223
100 1 _aUnterberger, Jérémie.
_eauthor.
245 1 4 _aThe Schrödinger-Virasoro Algebra
_h[electronic resource] :
_bMathematical structure and dynamical Schrödinger symmetries /
_cby Jérémie Unterberger, Claude Roger.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2012.
300 _aXLII, 302 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aTheoretical and Mathematical Physics,
_x1864-5879
505 0 _aIntroduction -- Geometric Definitions of SV -- Basic Algebraic and Geometric Features -- Coadjoint Representaion -- Induced Representations and Verma Modules -- Coinduced Representations -- Vertex Representations -- Cohomology, Extensions and Deformations -- Action of sv on Schrödinger and Dirac Operators -- Monodromy of Schrödinger Operators -- Poisson Structures and Schrödinger Operators -- Supersymmetric Extensions of sv -- Appendix to chapter 6 -- Appendix to chapter 11 -- Index.
520 _aThis monograph provides the first up-to-date and self-contained presentation of a recently discovered mathematical structure—the Schrödinger-Virasoro algebra. Just as Poincaré invariance or conformal (Virasoro) invariance play a key role in understanding, respectively, elementary particles and two-dimensional equilibrium statistical physics, this algebra of non-relativistic conformal symmetries may be expected to apply itself naturally to the study of some models of non-equilibrium statistical physics, or more specifically in the context of recent developments related to the non-relativistic AdS/CFT correspondence.   The study of the structure of this infinite-dimensional Lie algebra touches upon topics as various as statistical physics, vertex algebras, Poisson geometry, integrable systems and supergeometry as well as representation theory, the cohomology of infinite-dimensional Lie algebras, and the spectral theory of Schrödinger operators. .
650 0 _aPhysics.
650 0 _aAlgebra.
650 0 _aTopological Groups.
650 0 _aMathematical physics.
650 1 4 _aPhysics.
650 2 4 _aMathematical Methods in Physics.
650 2 4 _aTopological Groups, Lie Groups.
650 2 4 _aMathematical Physics.
650 2 4 _aCategory Theory, Homological Algebra.
650 2 4 _aStatistical Physics, Dynamical Systems and Complexity.
700 1 _aRoger, Claude.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783642227165
830 0 _aTheoretical and Mathematical Physics,
_x1864-5879
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-642-22717-2
912 _aZDB-2-PHA
999 _c102077
_d102077