000 03175nam a22005175i 4500
001 978-3-642-20746-4
003 DE-He213
005 20140220083257.0
007 cr nn 008mamaa
008 130219s2012 gw | s |||| 0|eng d
020 _a9783642207464
_9978-3-642-20746-4
024 7 _a10.1007/978-3-642-20746-4
_2doi
050 4 _aTA357-359
072 7 _aTGMF
_2bicssc
072 7 _aTGMF1
_2bicssc
072 7 _aTEC009070
_2bisacsh
072 7 _aSCI085000
_2bisacsh
082 0 4 _a620.1064
_223
100 1 _aZeytounian, Radyadour Kh.
_eauthor.
245 1 0 _aNavier-Stokes-Fourier Equations
_h[electronic resource] :
_bA Rational Asymptotic Modelling Point of View /
_cby Radyadour Kh. Zeytounian.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2012.
300 _aXVI, 276p. 4 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 _aSome Preliminary Comments -- From Euler and Navier Equations to NS-F Full Unsready Equations -- Dimensionless NS-F Equations and Parameters -- The Mathematics of the Rational Asymptotic Modelling -- A Deconstruction Approach for an Unsteady NS-F Fluid Flow at Large Reynolds Number -- Three RAM Applications in Aerodynamics -- The RAM Approach of Bénard Problem -- Two RAM Applications for Atmospheric Motions.
520 _aThis research monograph deals with a modeling theory of the system of Navier-Stokes-Fourier equations for a Newtonian fluid governing a compressible viscous and heat conducting flows. The main objective is threefold. First , to 'deconstruct' this Navier-Stokes-Fourier system in order to unify the puzzle of the various partial simplified approximate models used in Newtonian Classical Fluid Dynamics and this, first facet, have obviously a challenging approach and a very important pedagogic impact on the university education. The second facet of the main objective is to outline a rational consistent asymptotic/mathematical theory of the of  fluid flows modeling on the basis of a typical Navier-Stokes-Fourier  initial and boundary value problem. The third facet is devoted to an illustration of our rational asymptotic/mathematical modeling theory for various technological and geophysical stiff  problems from: aerodynamics, thermal and thermocapillary convections and also meteofluid dynamics.
650 0 _aEngineering.
650 0 _aMeteorology.
650 0 _aDifferential equations, partial.
650 0 _aEngineering mathematics.
650 0 _aHydraulic engineering.
650 1 4 _aEngineering.
650 2 4 _aEngineering Fluid Dynamics.
650 2 4 _aFluid- and Aerodynamics.
650 2 4 _aPartial Differential Equations.
650 2 4 _aMeteorology/Climatology.
650 2 4 _aAppl.Mathematics/Computational Methods of Engineering.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783642207457
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-642-20746-4
912 _aZDB-2-ENG
999 _c101952
_d101952